You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/tw/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb

1300 lines
75 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"nbformat": 4,
"nbformat_minor": 2,
"metadata": {
"colab": {
"name": "lesson_11-R.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "ir",
"display_name": "R"
},
"language_info": {
"name": "R"
},
"coopTranslator": {
"original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2",
"translation_date": "2025-09-03T20:26:25+00:00",
"source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb",
"language_code": "tw"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# 建立分類模型:美味的亞洲和印度料理\n"
],
"metadata": {
"id": "zs2woWv_HoE8"
}
},
{
"cell_type": "markdown",
"source": [
"## 美食分類器 1\n",
"\n",
"在本課程中,我們將探索各種分類器,*根據一組食材來預測特定的國家美食*。在此過程中,我們將深入了解如何利用算法進行分類任務。\n",
"\n",
"### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n",
"\n",
"### **準備工作**\n",
"\n",
"本課程基於我們的[上一課程](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb),其中我們:\n",
"\n",
"- 使用關於亞洲和印度所有美味佳餚的數據集,輕鬆介紹了分類 😋。\n",
"\n",
"- 探索了一些 [dplyr 動詞](https://dplyr.tidyverse.org/) 來準備和清理數據。\n",
"\n",
"- 使用 ggplot2 創建了美麗的可視化圖表。\n",
"\n",
"- 演示了如何通過使用 [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html) 預處理來處理不平衡數據。\n",
"\n",
"- 演示了如何 `prep` 和 `bake` 我們的配方,以確認其能如預期運作。\n",
"\n",
"#### **先決條件**\n",
"\n",
"在本課程中,我們需要以下套件來清理、準備和可視化數據:\n",
"\n",
"- `tidyverse` [tidyverse](https://www.tidyverse.org/) 是一個 [R 套件集合](https://www.tidyverse.org/packages),旨在使數據科學更快速、更簡單、更有趣!\n",
"\n",
"- `tidymodels` [tidymodels](https://www.tidymodels.org/) 框架是一個 [套件集合](https://www.tidymodels.org/packages/) 用於建模和機器學習。\n",
"\n",
"- `themis` [themis 套件](https://themis.tidymodels.org/) 提供了額外的配方步驟,用於處理不平衡數據。\n",
"\n",
"- `nnet` [nnet 套件](https://cran.r-project.org/web/packages/nnet/nnet.pdf) 提供了估算具有單個隱藏層的前饋神經網絡以及多項式邏輯回歸模型的函數。\n",
"\n",
"您可以通過以下方式安裝它們:\n"
],
"metadata": {
"id": "iDFOb3ebHwQC"
}
},
{
"cell_type": "markdown",
"source": [
"`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n",
"\n",
"或者,以下腳本會檢查您是否已安裝完成此模組所需的套件,若缺少則會自動為您安裝。\n"
],
"metadata": {
"id": "4V85BGCjII7F"
}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n",
"\r\n",
"pacman::p_load(tidyverse, tidymodels, themis, here)"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Loading required package: pacman\n",
"\n"
]
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "an5NPyyKIKNR",
"outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8"
}
},
{
"cell_type": "markdown",
"source": [
"現在,讓我們開始吧!\n",
"\n",
"## 1. 將數據分成訓練集和測試集。\n",
"\n",
"我們將從上一課的一些步驟開始。\n",
"\n",
"### 使用 `dplyr::select()` 移除最常見的食材,這些食材容易在不同菜系間造成混淆。\n",
"\n",
"大家都喜歡米飯、大蒜和薑!\n"
],
"metadata": {
"id": "0ax9GQLBINVv"
}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"# Load the original cuisines data\r\n",
"df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n",
"\r\n",
"# Drop id column, rice, garlic and ginger from our original data set\r\n",
"df_select <- df %>% \r\n",
" select(-c(1, rice, garlic, ginger)) %>%\r\n",
" # Encode cuisine column as categorical\r\n",
" mutate(cuisine = factor(cuisine))\r\n",
"\r\n",
"# Display new data set\r\n",
"df_select %>% \r\n",
" slice_head(n = 5)\r\n",
"\r\n",
"# Display distribution of cuisines\r\n",
"df_select %>% \r\n",
" count(cuisine) %>% \r\n",
" arrange(desc(n))"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"New names:\n",
"* `` -> ...1\n",
"\n",
"\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n",
"\n",
"\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n",
"\u001b[1mDelimiter:\u001b[22m \",\"\n",
"\u001b[31mchr\u001b[39m (1): cuisine\n",
"\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n",
"\n",
"\n",
"\u001b[36m\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n",
"\u001b[36m\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n",
"\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
"1 indian 0 0 0 0 0 0 0 0 \n",
"2 indian 1 0 0 0 0 0 0 0 \n",
"3 indian 0 0 0 0 0 0 0 0 \n",
"4 indian 0 0 0 0 0 0 0 0 \n",
"5 indian 0 0 0 0 0 0 0 0 \n",
" artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
"1 0 ⋯ 0 0 0 0 0 0 \n",
"2 0 ⋯ 0 0 0 0 0 0 \n",
"3 0 ⋯ 0 0 0 0 0 0 \n",
"4 0 ⋯ 0 0 0 0 0 0 \n",
"5 0 ⋯ 0 0 0 0 0 0 \n",
" yam yeast yogurt zucchini\n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"5 0 0 1 0 "
],
"text/markdown": [
"\n",
"A tibble: 5 × 381\n",
"\n",
"| cuisine &lt;fct&gt; | almond &lt;dbl&gt; | angelica &lt;dbl&gt; | anise &lt;dbl&gt; | anise_seed &lt;dbl&gt; | apple &lt;dbl&gt; | apple_brandy &lt;dbl&gt; | apricot &lt;dbl&gt; | armagnac &lt;dbl&gt; | artemisia &lt;dbl&gt; | ⋯ ⋯ | whiskey &lt;dbl&gt; | white_bread &lt;dbl&gt; | white_wine &lt;dbl&gt; | whole_grain_wheat_flour &lt;dbl&gt; | wine &lt;dbl&gt; | wood &lt;dbl&gt; | yam &lt;dbl&gt; | yeast &lt;dbl&gt; | yogurt &lt;dbl&gt; | zucchini &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 381\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
" cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
" <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & ⋯ & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 381</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>almond</th><th scope=col>angelica</th><th scope=col>anise</th><th scope=col>anise_seed</th><th scope=col>apple</th><th scope=col>apple_brandy</th><th scope=col>apricot</th><th scope=col>armagnac</th><th scope=col>artemisia</th><th scope=col>⋯</th><th scope=col>whiskey</th><th scope=col>white_bread</th><th scope=col>white_wine</th><th scope=col>whole_grain_wheat_flour</th><th scope=col>wine</th><th scope=col>wood</th><th scope=col>yam</th><th scope=col>yeast</th><th scope=col>yogurt</th><th scope=col>zucchini</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>⋯</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine n \n",
"1 korean 799\n",
"2 indian 598\n",
"3 chinese 442\n",
"4 japanese 320\n",
"5 thai 289"
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | n &lt;int&gt; |\n",
"|---|---|\n",
"| korean | 799 |\n",
"| indian | 598 |\n",
"| chinese | 442 |\n",
"| japanese | 320 |\n",
"| thai | 289 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & n\\\\\n",
" <fct> & <int>\\\\\n",
"\\hline\n",
"\t korean & 799\\\\\n",
"\t indian & 598\\\\\n",
"\t chinese & 442\\\\\n",
"\t japanese & 320\\\\\n",
"\t thai & 289\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>n</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>korean </td><td>799</td></tr>\n",
"\t<tr><td>indian </td><td>598</td></tr>\n",
"\t<tr><td>chinese </td><td>442</td></tr>\n",
"\t<tr><td>japanese</td><td>320</td></tr>\n",
"\t<tr><td>thai </td><td>289</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 735
},
"id": "jhCrrH22IWVR",
"outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c"
}
},
{
"cell_type": "markdown",
"source": [
"太好了!現在是時候將數據分割為 70% 用於訓練30% 用於測試。我們還會在分割數據時應用「分層」技術,以「保持每種料理的比例」在訓練和驗證數據集中。\n",
"\n",
"[rsample](https://rsample.tidymodels.org/) 是 Tidymodels 中的一個套件,提供高效數據分割和重抽樣的基礎設施:\n"
],
"metadata": {
"id": "AYTjVyajIdny"
}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"# Load the core Tidymodels packages into R session\r\n",
"library(tidymodels)\r\n",
"\r\n",
"# Create split specification\r\n",
"set.seed(2056)\r\n",
"cuisines_split <- initial_split(data = df_select,\r\n",
" strata = cuisine,\r\n",
" prop = 0.7)\r\n",
"\r\n",
"# Extract the data in each split\r\n",
"cuisines_train <- training(cuisines_split)\r\n",
"cuisines_test <- testing(cuisines_split)\r\n",
"\r\n",
"# Print the number of cases in each split\r\n",
"cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n",
" \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n",
"\r\n",
"# Display the first few rows of the training set\r\n",
"cuisines_train %>% \r\n",
" slice_head(n = 5)\r\n",
"\r\n",
"\r\n",
"# Display distribution of cuisines in the training set\r\n",
"cuisines_train %>% \r\n",
" count(cuisine) %>% \r\n",
" arrange(desc(n))"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Training cases: 1712\n",
"Test cases: 736"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
"1 chinese 0 0 0 0 0 0 0 0 \n",
"2 chinese 0 0 0 0 0 0 0 0 \n",
"3 chinese 0 0 0 0 0 0 0 0 \n",
"4 chinese 0 0 0 0 0 0 0 0 \n",
"5 chinese 0 0 0 0 0 0 0 0 \n",
" artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
"1 0 ⋯ 0 0 0 0 1 0 \n",
"2 0 ⋯ 0 0 0 0 1 0 \n",
"3 0 ⋯ 0 0 0 0 0 0 \n",
"4 0 ⋯ 0 0 0 0 0 0 \n",
"5 0 ⋯ 0 0 0 0 0 0 \n",
" yam yeast yogurt zucchini\n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"5 0 0 0 0 "
],
"text/markdown": [
"\n",
"A tibble: 5 × 381\n",
"\n",
"| cuisine &lt;fct&gt; | almond &lt;dbl&gt; | angelica &lt;dbl&gt; | anise &lt;dbl&gt; | anise_seed &lt;dbl&gt; | apple &lt;dbl&gt; | apple_brandy &lt;dbl&gt; | apricot &lt;dbl&gt; | armagnac &lt;dbl&gt; | artemisia &lt;dbl&gt; | ⋯ ⋯ | whiskey &lt;dbl&gt; | white_bread &lt;dbl&gt; | white_wine &lt;dbl&gt; | whole_grain_wheat_flour &lt;dbl&gt; | wine &lt;dbl&gt; | wood &lt;dbl&gt; | yam &lt;dbl&gt; | yeast &lt;dbl&gt; | yogurt &lt;dbl&gt; | zucchini &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 381\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
" cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
" <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & ⋯ & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 381</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>almond</th><th scope=col>angelica</th><th scope=col>anise</th><th scope=col>anise_seed</th><th scope=col>apple</th><th scope=col>apple_brandy</th><th scope=col>apricot</th><th scope=col>armagnac</th><th scope=col>artemisia</th><th scope=col>⋯</th><th scope=col>whiskey</th><th scope=col>white_bread</th><th scope=col>white_wine</th><th scope=col>whole_grain_wheat_flour</th><th scope=col>wine</th><th scope=col>wood</th><th scope=col>yam</th><th scope=col>yeast</th><th scope=col>yogurt</th><th scope=col>zucchini</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>⋯</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine n \n",
"1 korean 559\n",
"2 indian 418\n",
"3 chinese 309\n",
"4 japanese 224\n",
"5 thai 202"
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | n &lt;int&gt; |\n",
"|---|---|\n",
"| korean | 559 |\n",
"| indian | 418 |\n",
"| chinese | 309 |\n",
"| japanese | 224 |\n",
"| thai | 202 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & n\\\\\n",
" <fct> & <int>\\\\\n",
"\\hline\n",
"\t korean & 559\\\\\n",
"\t indian & 418\\\\\n",
"\t chinese & 309\\\\\n",
"\t japanese & 224\\\\\n",
"\t thai & 202\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>n</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>korean </td><td>559</td></tr>\n",
"\t<tr><td>indian </td><td>418</td></tr>\n",
"\t<tr><td>chinese </td><td>309</td></tr>\n",
"\t<tr><td>japanese</td><td>224</td></tr>\n",
"\t<tr><td>thai </td><td>202</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 535
},
"id": "w5FWIkEiIjdN",
"outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df"
}
},
{
"cell_type": "markdown",
"source": [
"## 2. 處理不平衡的數據\n",
"\n",
"如你可能已注意到,在原始數據集以及我們的訓練集裡,菜系的數量分佈非常不均。韓國菜的數量*幾乎*是泰國菜的三倍。不平衡的數據通常會對模型的性能產生負面影響。許多模型在觀測數量相等時表現最佳,因此在面對不平衡數據時往往會遇到困難。\n",
"\n",
"處理不平衡數據集主要有兩種方法:\n",
"\n",
"- 增加少數類別的觀測數量:`過採樣`,例如使用 SMOTE 演算法,該演算法通過少數類別案例的最近鄰生成新的合成樣本。\n",
"\n",
"- 減少多數類別的觀測數量:`欠採樣`\n",
"\n",
"在之前的課程中,我們展示了如何使用 `recipe` 來處理不平衡數據集。`recipe` 可以被視為一種藍圖,描述了應該對數據集採取哪些步驟以使其準備好進行數據分析。在我們的情況下,我們希望在 `訓練集` 中菜系的數量分佈是均等的。讓我們直接開始吧!\n"
],
"metadata": {
"id": "daBi9qJNIwqW"
}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"# Load themis package for dealing with imbalanced data\r\n",
"library(themis)\r\n",
"\r\n",
"# Create a recipe for preprocessing training data\r\n",
"cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n",
" step_smote(cuisine)\r\n",
"\r\n",
"# Print recipe\r\n",
"cuisines_recipe"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Data Recipe\n",
"\n",
"Inputs:\n",
"\n",
" role #variables\n",
" outcome 1\n",
" predictor 380\n",
"\n",
"Operations:\n",
"\n",
"SMOTE based on cuisine"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 200
},
"id": "Az6LFBGxI1X0",
"outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6"
}
},
{
"cell_type": "markdown",
"source": [
"您可以先確認使用準備和烘焙這個配方是否如您所期望地運作——所有標籤為「559」的料理都已被觀察到。\n",
"\n",
"由於我們將使用這個配方作為建模的預處理器,`workflow()` 會幫我們完成所有的準備和烘焙,因此我們不需要手動估算配方。\n",
"\n",
"現在我們準備好訓練模型了 👩‍💻👨‍💻!\n",
"\n",
"## 3. 選擇您的分類器\n",
"\n",
"<p >\n",
" <img src=\"../../images/parsnip.jpg\"\n",
" width=\"600\"/>\n",
" <figcaption>插畫由 @allison_horst 提供</figcaption>\n"
],
"metadata": {
"id": "NBL3PqIWJBBB"
}
},
{
"cell_type": "markdown",
"source": [
"現在我們需要決定使用哪種演算法來完成這項工作 🤔。\n",
"\n",
"在 Tidymodels 中,[`parsnip 套件`](https://parsnip.tidymodels.org/index.html) 提供了一個一致的介面,用於跨不同引擎(套件)處理模型。請參閱 parsnip 文件以探索[模型類型與引擎](https://www.tidymodels.org/find/parsnip/#models)及其對應的[模型參數](https://www.tidymodels.org/find/parsnip/#model-args)。乍看之下,種類繁多令人眼花繚亂。例如,以下方法都包含分類技術:\n",
"\n",
"- C5.0 規則型分類模型\n",
"\n",
"- 彈性判別模型\n",
"\n",
"- 線性判別模型\n",
"\n",
"- 正則化判別模型\n",
"\n",
"- 邏輯回歸模型\n",
"\n",
"- 多項式回歸模型\n",
"\n",
"- 樸素貝葉斯模型\n",
"\n",
"- 支援向量機\n",
"\n",
"- 最近鄰居法\n",
"\n",
"- 決策樹\n",
"\n",
"- 集成方法\n",
"\n",
"- 神經網路\n",
"\n",
"這份清單還在繼續!\n",
"\n",
"### **選擇哪種分類器?**\n",
"\n",
"那麼,應該選擇哪種分類器呢?通常,嘗試多種方法並尋找效果良好的結果是一種測試方式。\n",
"\n",
"> AutoML 通過在雲端執行這些比較,巧妙地解決了這個問題,讓您能夠選擇最適合您數據的演算法。試試看 [這裡](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n",
"\n",
"此外,分類器的選擇取決於我們的問題。例如,當結果可以分為`多於兩個類別`時,就像我們的案例一樣,您必須使用`多類別分類演算法`而不是`二元分類`。\n",
"\n",
"### **更好的方法**\n",
"\n",
"比隨意猜測更好的方法是遵循這份可下載的[機器學習速查表](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)中的建議。在這裡,我們發現針對我們的多類別問題,我們有一些選擇:\n",
"\n",
"<p >\n",
" <img src=\"../../images/cheatsheet.png\"\n",
" width=\"500\"/>\n",
" <figcaption>微軟演算法速查表的一部分,詳細說明了多類別分類選項</figcaption>\n"
],
"metadata": {
"id": "a6DLAZ3vJZ14"
}
},
{
"cell_type": "markdown",
"source": [
"### **推理**\n",
"\n",
"讓我們根據現有的限制來探討不同的解決方法:\n",
"\n",
"- **深度神經網絡過於繁重**。考慮到我們的數據集雖然乾淨但規模較小,以及我們是在本地通過筆記本進行訓練,深度神經網絡對於這項任務來說過於笨重。\n",
"\n",
"- **不使用二分類器**。我們不使用二分類器,因此排除了 one-vs-all 的方法。\n",
"\n",
"- **決策樹或邏輯回歸可能有效**。決策樹可能有效,或者對於多分類數據,可以使用多項式回歸/多分類邏輯回歸。\n",
"\n",
"- **多分類提升決策樹解決的是不同的問題**。多分類提升決策樹最適合非參數任務,例如設計用於建立排名的任務,因此對我們來說並不適用。\n",
"\n",
"此外,通常在嘗試更複雜的機器學習模型(例如集成方法)之前,先建立最簡單的模型來了解數據的基本情況是個好主意。因此,在本課中,我們將從 `多項式回歸` 模型開始。\n",
"\n",
"> 邏輯回歸是一種用於結果變量是分類(或名義)時的技術。對於二元邏輯回歸,結果變量的數量是兩個,而對於多項式邏輯回歸,結果變量的數量超過兩個。請參閱 [進階回歸方法](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) 以了解更多。\n",
"\n",
"## 4. 訓練並評估多項式邏輯回歸模型\n",
"\n",
"在 Tidymodels 中,`parsnip::multinom_reg()` 定義了一種使用線性預測器來通過多項分佈預測多分類數據的模型。請參閱 `?multinom_reg()` 以了解可以用來擬合此模型的不同方法/引擎。\n",
"\n",
"在此示例中,我們將通過默認的 [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) 引擎來擬合多項式回歸模型。\n",
"\n",
"> 我隨機選擇了一個 `penalty` 值。選擇此值有更好的方法,例如通過 `重抽樣` 和 `調整` 模型,我們稍後會討論。\n",
">\n",
"> 如果您想了解更多有關如何調整模型超參數的信息,請參閱 [Tidymodels: 入門指南](https://www.tidymodels.org/start/tuning/)。\n"
],
"metadata": {
"id": "gWMsVcbBJemu"
}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"# Create a multinomial regression model specification\r\n",
"mr_spec <- multinom_reg(penalty = 1) %>% \r\n",
" set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n",
" set_mode(\"classification\")\r\n",
"\r\n",
"# Print model specification\r\n",
"mr_spec"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Multinomial Regression Model Specification (classification)\n",
"\n",
"Main Arguments:\n",
" penalty = 1\n",
"\n",
"Engine-Specific Arguments:\n",
" MaxNWts = 2086\n",
"\n",
"Computational engine: nnet \n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 166
},
"id": "Wq_fcyQiJvfG",
"outputId": "c30449c7-3864-4be7-f810-72a003743e2d"
}
},
{
"cell_type": "markdown",
"source": [
"做得好 🥳!現在我們已經有了一個配方和模型規格,我們需要找到一種方法將它們整合成一個物件,該物件首先會對數據進行預處理,然後在預處理後的數據上擬合模型,並且還能支持潛在的後處理活動。在 Tidymodels 中,這個方便的物件被稱為 [`workflow`](https://workflows.tidymodels.org/),它能方便地保存你的建模組件!這就像我們在 *Python* 中所稱的 *pipelines*。\n",
"\n",
"那麼,讓我們把所有東西整合到一個 workflow 中吧!📦\n"
],
"metadata": {
"id": "NlSbzDfgJ0zh"
}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"# Bundle recipe and model specification\r\n",
"mr_wf <- workflow() %>% \r\n",
" add_recipe(cuisines_recipe) %>% \r\n",
" add_model(mr_spec)\r\n",
"\r\n",
"# Print out workflow\r\n",
"mr_wf"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"══ Workflow ════════════════════════════════════════════════════════════════════\n",
"\u001b[3mPreprocessor:\u001b[23m Recipe\n",
"\u001b[3mModel:\u001b[23m multinom_reg()\n",
"\n",
"── Preprocessor ────────────────────────────────────────────────────────────────\n",
"1 Recipe Step\n",
"\n",
"• step_smote()\n",
"\n",
"── Model ───────────────────────────────────────────────────────────────────────\n",
"Multinomial Regression Model Specification (classification)\n",
"\n",
"Main Arguments:\n",
" penalty = 1\n",
"\n",
"Engine-Specific Arguments:\n",
" MaxNWts = 2086\n",
"\n",
"Computational engine: nnet \n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 333
},
"id": "Sc1TfPA4Ke3_",
"outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c"
}
},
{
"cell_type": "markdown",
"source": [
"工作流程 👌👌!**`workflow()`** 可以像模型一樣進行擬合。所以,是時候訓練模型了!\n"
],
"metadata": {
"id": "TNQ8i85aKf9L"
}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"# Train a multinomial regression model\n",
"mr_fit <- fit(object = mr_wf, data = cuisines_train)\n",
"\n",
"mr_fit"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"══ Workflow [trained] ══════════════════════════════════════════════════════════\n",
"\u001b[3mPreprocessor:\u001b[23m Recipe\n",
"\u001b[3mModel:\u001b[23m multinom_reg()\n",
"\n",
"── Preprocessor ────────────────────────────────────────────────────────────────\n",
"1 Recipe Step\n",
"\n",
"• step_smote()\n",
"\n",
"── Model ───────────────────────────────────────────────────────────────────────\n",
"Call:\n",
"nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n",
" trace = FALSE)\n",
"\n",
"Coefficients:\n",
" (Intercept) almond angelica anise anise_seed apple\n",
"indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n",
"japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n",
"korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n",
"thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n",
" apple_brandy apricot armagnac artemisia artichoke asparagus\n",
"indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n",
"japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n",
"korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n",
"thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n",
" avocado bacon baked_potato balm banana barley\n",
"indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n",
"japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n",
"korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n",
"thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n",
" bartlett_pear basil bay bean beech\n",
"indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n",
"japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n",
"korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n",
"thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n",
" beef beef_broth beef_liver beer beet\n",
"indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n",
"japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n",
"korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n",
"thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n",
" bell_pepper bergamot berry bitter_orange black_bean\n",
"indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n",
"japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n",
"korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n",
"thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n",
" black_currant black_mustard_seed_oil black_pepper black_raspberry\n",
"indian 0 0.38935801 -0.4453495 0\n",
"japanese 0 -0.05452887 -0.5440869 0\n",
"korean 0 -0.03929970 0.8025454 0\n",
"thai 0 -0.21498372 -0.9854806 0\n",
" black_sesame_seed black_tea blackberry blackberry_brandy\n",
"indian -0.2759246 0.3079977 0.191256164 0\n",
"japanese -0.6101687 -0.1671913 -0.118915977 0\n",
"korean 1.5197674 -0.3036261 -0.007729435 0\n",
"thai -0.1755656 -0.1487033 -0.002983296 0\n",
" blue_cheese blueberry bone_oil bourbon_whiskey brandy\n",
"indian 0 0.216164294 -0.2276744 0 0.22427587\n",
"japanese 0 -0.119186087 0.3913019 0 -0.15595599\n",
"korean 0 -0.007821986 0.2854487 0 -0.02562342\n",
"thai 0 -0.004947048 -0.0253658 0 -0.05715244\n",
"\n",
"...\n",
"and 308 more lines."
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "GMbdfVmTKkJI",
"outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e"
}
},
{
"cell_type": "markdown",
"source": [
"模型訓練期間學到的係數如下。\n",
"\n",
"### 評估訓練好的模型\n",
"\n",
"現在是時候透過測試集來評估模型的表現了 📏!首先,讓我們從測試集開始進行預測。\n"
],
"metadata": {
"id": "tt2BfOxrKmcJ"
}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"# Make predictions on the test set\n",
"results <- cuisines_test %>% select(cuisine) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n",
"\n",
"# Print out results\n",
"results %>% \n",
" slice_head(n = 5)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine .pred_class\n",
"1 indian thai \n",
"2 indian indian \n",
"3 indian indian \n",
"4 indian indian \n",
"5 indian indian "
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | .pred_class &lt;fct&gt; |\n",
"|---|---|\n",
"| indian | thai |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & .pred\\_class\\\\\n",
" <fct> & <fct>\\\\\n",
"\\hline\n",
"\t indian & thai \\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>.pred_class</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;fct&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>thai </td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 248
},
"id": "CqtckvtsKqax",
"outputId": "e57fe557-6a68-4217-fe82-173328c5436d"
}
},
{
"cell_type": "markdown",
"source": [
"出色的工作!在 Tidymodels 中,可以使用 [yardstick](https://yardstick.tidymodels.org/) 評估模型性能——這是一個用於通過性能指標衡量模型效果的套件。正如我們在邏輯迴歸課程中所做的那樣,讓我們從計算混淆矩陣開始。\n"
],
"metadata": {
"id": "8w5N6XsBKss7"
}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"# Confusion matrix for categorical data\n",
"conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" Truth\n",
"Prediction chinese indian japanese korean thai\n",
" chinese 83 1 8 15 10\n",
" indian 4 163 1 2 6\n",
" japanese 21 5 73 25 1\n",
" korean 15 0 11 191 0\n",
" thai 10 11 3 7 70"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 133
},
"id": "YvODvsLkK0iG",
"outputId": "bb69da84-1266-47ad-b174-d43b88ca2988"
}
},
{
"cell_type": "markdown",
"source": [
"當處理多個類別時,通常更直觀的方式是將其視為熱圖,如下所示:\n"
],
"metadata": {
"id": "c0HfPL16Lr6U"
}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
"update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n",
"# Visualize confusion matrix\n",
"results %>% \n",
" conf_mat(cuisine, .pred_class) %>% \n",
" autoplot(type = \"heatmap\")"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"plot without title"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg=="
},
"metadata": {
"image/png": {
"width": 420,
"height": 420
}
}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 436
},
"id": "HsAtwukyLsvt",
"outputId": "3032a224-a2c8-4270-b4f2-7bb620317400"
}
},
{
"cell_type": "markdown",
"source": [
"混淆矩陣圖中較深的方格表示案例數量較多,您應該可以看到一條由較深方格組成的對角線,表示預測標籤與實際標籤相同的案例。\n",
"\n",
"現在讓我們計算混淆矩陣的摘要統計數據。\n"
],
"metadata": {
"id": "oOJC87dkLwPr"
}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"# Summary stats for confusion matrix\n",
"conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n",
"summary()"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" .metric .estimator .estimate\n",
"1 accuracy multiclass 0.7880435\n",
"2 kap multiclass 0.7276583\n",
"3 sens macro 0.7780927\n",
"4 spec macro 0.9477598\n",
"5 ppv macro 0.7585583\n",
"6 npv macro 0.9460080\n",
"7 mcc multiclass 0.7292724\n",
"8 j_index macro 0.7258524\n",
"9 bal_accuracy macro 0.8629262\n",
"10 detection_prevalence macro 0.2000000\n",
"11 precision macro 0.7585583\n",
"12 recall macro 0.7780927\n",
"13 f_meas macro 0.7641862"
],
"text/markdown": [
"\n",
"A tibble: 13 × 3\n",
"\n",
"| .metric &lt;chr&gt; | .estimator &lt;chr&gt; | .estimate &lt;dbl&gt; |\n",
"|---|---|---|\n",
"| accuracy | multiclass | 0.7880435 |\n",
"| kap | multiclass | 0.7276583 |\n",
"| sens | macro | 0.7780927 |\n",
"| spec | macro | 0.9477598 |\n",
"| ppv | macro | 0.7585583 |\n",
"| npv | macro | 0.9460080 |\n",
"| mcc | multiclass | 0.7292724 |\n",
"| j_index | macro | 0.7258524 |\n",
"| bal_accuracy | macro | 0.8629262 |\n",
"| detection_prevalence | macro | 0.2000000 |\n",
"| precision | macro | 0.7585583 |\n",
"| recall | macro | 0.7780927 |\n",
"| f_meas | macro | 0.7641862 |\n",
"\n"
],
"text/latex": [
"A tibble: 13 × 3\n",
"\\begin{tabular}{lll}\n",
" .metric & .estimator & .estimate\\\\\n",
" <chr> & <chr> & <dbl>\\\\\n",
"\\hline\n",
"\t accuracy & multiclass & 0.7880435\\\\\n",
"\t kap & multiclass & 0.7276583\\\\\n",
"\t sens & macro & 0.7780927\\\\\n",
"\t spec & macro & 0.9477598\\\\\n",
"\t ppv & macro & 0.7585583\\\\\n",
"\t npv & macro & 0.9460080\\\\\n",
"\t mcc & multiclass & 0.7292724\\\\\n",
"\t j\\_index & macro & 0.7258524\\\\\n",
"\t bal\\_accuracy & macro & 0.8629262\\\\\n",
"\t detection\\_prevalence & macro & 0.2000000\\\\\n",
"\t precision & macro & 0.7585583\\\\\n",
"\t recall & macro & 0.7780927\\\\\n",
"\t f\\_meas & macro & 0.7641862\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 13 × 3</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>.metric</th><th scope=col>.estimator</th><th scope=col>.estimate</th></tr>\n",
"\t<tr><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>accuracy </td><td>multiclass</td><td>0.7880435</td></tr>\n",
"\t<tr><td>kap </td><td>multiclass</td><td>0.7276583</td></tr>\n",
"\t<tr><td>sens </td><td>macro </td><td>0.7780927</td></tr>\n",
"\t<tr><td>spec </td><td>macro </td><td>0.9477598</td></tr>\n",
"\t<tr><td>ppv </td><td>macro </td><td>0.7585583</td></tr>\n",
"\t<tr><td>npv </td><td>macro </td><td>0.9460080</td></tr>\n",
"\t<tr><td>mcc </td><td>multiclass</td><td>0.7292724</td></tr>\n",
"\t<tr><td>j_index </td><td>macro </td><td>0.7258524</td></tr>\n",
"\t<tr><td>bal_accuracy </td><td>macro </td><td>0.8629262</td></tr>\n",
"\t<tr><td>detection_prevalence</td><td>macro </td><td>0.2000000</td></tr>\n",
"\t<tr><td>precision </td><td>macro </td><td>0.7585583</td></tr>\n",
"\t<tr><td>recall </td><td>macro </td><td>0.7780927</td></tr>\n",
"\t<tr><td>f_meas </td><td>macro </td><td>0.7641862</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 494
},
"id": "OYqetUyzL5Wz",
"outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6"
}
},
{
"cell_type": "markdown",
"source": [
"如果我們聚焦於一些指標例如準確率、敏感度、陽性預測值ppv那麼作為一個起點我們的表現還不算太差 🥳!\n",
"\n",
"## 4. 更深入探討\n",
"\n",
"讓我們提出一個微妙的問題:用什麼標準來確定某種特定的料理類型作為預測結果?\n",
"\n",
"其實,統計機器學習算法(例如邏輯回歸)是基於「機率」的;因此,分類器實際上預測的是一組可能結果的機率分佈。擁有最高機率的類別會被選為給定觀測值中最可能的結果。\n",
"\n",
"接下來,我們通過進行硬分類預測和機率預測來看看這一過程的實際運作方式。\n"
],
"metadata": {
"id": "43t7vz8vMJtW"
}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"# Make hard class prediction and probabilities\n",
"results_prob <- cuisines_test %>%\n",
" select(cuisine) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n",
"\n",
"# Print out results\n",
"results_prob %>% \n",
" slice_head(n = 5)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n",
"1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n",
"2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n",
"3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n",
"4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n",
"5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n",
" .pred_thai \n",
"1 5.388194e-01\n",
"2 1.577948e-06\n",
"3 6.874989e-03\n",
"4 3.863391e-03\n",
"5 5.653283e-03"
],
"text/markdown": [
"\n",
"A tibble: 5 × 7\n",
"\n",
"| cuisine &lt;fct&gt; | .pred_class &lt;fct&gt; | .pred_chinese &lt;dbl&gt; | .pred_indian &lt;dbl&gt; | .pred_japanese &lt;dbl&gt; | .pred_korean &lt;dbl&gt; | .pred_thai &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|\n",
"| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n",
"| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n",
"| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n",
"| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n",
"| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 7\n",
"\\begin{tabular}{lllllll}\n",
" cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n",
" <fct> & <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n",
"\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n",
"\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n",
"\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n",
"\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 7</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>.pred_class</th><th scope=col>.pred_chinese</th><th scope=col>.pred_indian</th><th scope=col>.pred_japanese</th><th scope=col>.pred_korean</th><th scope=col>.pred_thai</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>thai </td><td>1.551259e-03</td><td>0.4587877</td><td>5.988039e-04</td><td>2.428503e-04</td><td>5.388194e-01</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>2.637133e-05</td><td>0.9999488</td><td>6.648651e-07</td><td>2.259993e-05</td><td>1.577948e-06</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>1.049433e-03</td><td>0.9909982</td><td>1.060937e-03</td><td>1.644947e-05</td><td>6.874989e-03</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>6.237482e-02</td><td>0.4763035</td><td>9.136702e-02</td><td>3.660913e-01</td><td>3.863391e-03</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>1.431745e-02</td><td>0.9418551</td><td>2.945239e-02</td><td>8.721782e-03</td><td>5.653283e-03</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 248
},
"id": "xdKNs-ZPMTJL",
"outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008"
}
},
{
"cell_type": "markdown",
"source": [
"✅ 你能解釋為什麼模型非常確定第一個觀察結果是泰國菜嗎?\n",
"\n",
"## **🚀挑戰**\n",
"\n",
"在這節課中,你使用清理過的數據建立了一個機器學習模型,能根據一系列食材預測國家料理。花些時間閱讀 [多種選項](https://www.tidymodels.org/find/parsnip/#models) Tidymodels 提供的分類數據方法,以及 [其他方法](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) 來適配多項式回歸。\n",
"\n",
"#### 感謝:\n",
"\n",
"[`Allison Horst`](https://twitter.com/allison_horst/) 創作了令人驚嘆的插圖,使 R 更加友好和吸引人。可以在她的 [畫廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) 中找到更多插圖。\n",
"\n",
"[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 創建了這個模組的原始 Python 版本 ♥️\n",
"\n",
"<br>\n",
"本來想加些笑話,但我真的不懂食物的雙關語 😅。\n",
"\n",
"<br>\n",
"\n",
"祝學習愉快,\n",
"\n",
"[Eric](https://twitter.com/ericntay)Gold Microsoft Learn 學生大使。\n"
],
"metadata": {
"id": "2tWVHMeLMYdM"
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**免責聲明** \n本文件使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。儘管我們努力確保翻譯的準確性,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於關鍵資訊,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解釋不承擔責任。\n"
]
}
]
}