You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/th/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb

1294 lines
90 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"nbformat": 4,
"nbformat_minor": 2,
"metadata": {
"colab": {
"name": "lesson_11-R.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "ir",
"display_name": "R"
},
"language_info": {
"name": "R"
},
"coopTranslator": {
"original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2",
"translation_date": "2025-09-06T14:39:22+00:00",
"source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb",
"language_code": "th"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [],
"metadata": {
"id": "zs2woWv_HoE8"
}
},
{
"cell_type": "markdown",
"source": [
"## ตัวจำแนกประเภทอาหาร 1\n",
"\n",
"ในบทเรียนนี้ เราจะสำรวจตัวจำแนกประเภทหลากหลายชนิดเพื่อ *ทำนายประเภทอาหารประจำชาติจากกลุ่มของส่วนผสมที่ให้มา* ในขณะเดียวกัน เราจะเรียนรู้เพิ่มเติมเกี่ยวกับวิธีที่อัลกอริทึมสามารถนำมาใช้ในงานการจำแนกประเภทได้\n",
"\n",
"### [**แบบทดสอบก่อนเรียน**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n",
"\n",
"### **การเตรียมตัว**\n",
"\n",
"บทเรียนนี้ต่อยอดจาก [บทเรียนก่อนหน้า](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb) ซึ่งเราได้:\n",
"\n",
"- แนะนำเบื้องต้นเกี่ยวกับการจำแนกประเภทโดยใช้ชุดข้อมูลเกี่ยวกับอาหารที่ยอดเยี่ยมของเอเชียและอินเดีย 😋\n",
"\n",
"- สำรวจ [dplyr verbs](https://dplyr.tidyverse.org/) เพื่อเตรียมและทำความสะอาดข้อมูลของเรา\n",
"\n",
"- สร้างภาพที่สวยงามโดยใช้ ggplot2\n",
"\n",
"- แสดงวิธีจัดการกับข้อมูลที่ไม่สมดุลโดยการเตรียมข้อมูลด้วย [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html)\n",
"\n",
"- แสดงวิธี `prep` และ `bake` สูตรของเราเพื่อยืนยันว่ามันทำงานตามที่คาดไว้\n",
"\n",
"#### **ข้อกำหนดเบื้องต้น**\n",
"\n",
"สำหรับบทเรียนนี้ เราจะต้องใช้แพ็กเกจต่อไปนี้เพื่อทำความสะอาด เตรียม และสร้างภาพข้อมูลของเรา:\n",
"\n",
"- `tidyverse`: [tidyverse](https://www.tidyverse.org/) คือ [ชุดของแพ็กเกจ R](https://www.tidyverse.org/packages) ที่ออกแบบมาเพื่อทำให้การวิเคราะห์ข้อมูลเร็วขึ้น ง่ายขึ้น และสนุกขึ้น!\n",
"\n",
"- `tidymodels`: [tidymodels](https://www.tidymodels.org/) เป็นกรอบงานที่เป็น [ชุดของแพ็กเกจ](https://www.tidymodels.org/packages/) สำหรับการสร้างแบบจำลองและการเรียนรู้ของเครื่อง\n",
"\n",
"- `themis`: [แพ็กเกจ themis](https://themis.tidymodels.org/) ให้ขั้นตอนเพิ่มเติมในสูตรสำหรับจัดการกับข้อมูลที่ไม่สมดุล\n",
"\n",
"- `nnet`: [แพ็กเกจ nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) ให้ฟังก์ชันสำหรับการประมาณเครือข่ายประสาทเทียมแบบ feed-forward ที่มีชั้นซ่อนเพียงชั้นเดียว และสำหรับแบบจำลองการถดถอยโลจิสติกแบบหลายตัวแปร\n",
"\n",
"คุณสามารถติดตั้งแพ็กเกจเหล่านี้ได้ดังนี้:\n"
],
"metadata": {
"id": "iDFOb3ebHwQC"
}
},
{
"cell_type": "markdown",
"source": [
"`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n",
"\n",
"หรือคุณสามารถใช้สคริปต์ด้านล่างเพื่อตรวจสอบว่าคุณมีแพ็กเกจที่จำเป็นสำหรับการทำโมดูลนี้หรือไม่ และติดตั้งให้คุณในกรณีที่ยังไม่มี\n"
],
"metadata": {
"id": "4V85BGCjII7F"
}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n",
"\r\n",
"pacman::p_load(tidyverse, tidymodels, themis, here)"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Loading required package: pacman\n",
"\n"
]
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "an5NPyyKIKNR",
"outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8"
}
},
{
"cell_type": "markdown",
"source": [
"## 1. แบ่งข้อมูลออกเป็นชุดฝึกอบรมและชุดทดสอบ\n",
"\n",
"เราจะเริ่มต้นด้วยการเลือกขั้นตอนบางส่วนจากบทเรียนก่อนหน้านี้\n",
"\n",
"### ลบส่วนผสมที่พบได้บ่อยที่สุดซึ่งสร้างความสับสนระหว่างอาหารที่แตกต่างกัน โดยใช้ `dplyr::select()`\n",
"\n",
"ใครๆ ก็ชอบข้าว กระเทียม และขิง!\n"
],
"metadata": {
"id": "0ax9GQLBINVv"
}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"# Load the original cuisines data\r\n",
"df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n",
"\r\n",
"# Drop id column, rice, garlic and ginger from our original data set\r\n",
"df_select <- df %>% \r\n",
" select(-c(1, rice, garlic, ginger)) %>%\r\n",
" # Encode cuisine column as categorical\r\n",
" mutate(cuisine = factor(cuisine))\r\n",
"\r\n",
"# Display new data set\r\n",
"df_select %>% \r\n",
" slice_head(n = 5)\r\n",
"\r\n",
"# Display distribution of cuisines\r\n",
"df_select %>% \r\n",
" count(cuisine) %>% \r\n",
" arrange(desc(n))"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"New names:\n",
"* `` -> ...1\n",
"\n",
"\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n",
"\n",
"\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n",
"\u001b[1mDelimiter:\u001b[22m \",\"\n",
"\u001b[31mchr\u001b[39m (1): cuisine\n",
"\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n",
"\n",
"\n",
"\u001b[36m\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n",
"\u001b[36m\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n",
"\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
"1 indian 0 0 0 0 0 0 0 0 \n",
"2 indian 1 0 0 0 0 0 0 0 \n",
"3 indian 0 0 0 0 0 0 0 0 \n",
"4 indian 0 0 0 0 0 0 0 0 \n",
"5 indian 0 0 0 0 0 0 0 0 \n",
" artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
"1 0 ⋯ 0 0 0 0 0 0 \n",
"2 0 ⋯ 0 0 0 0 0 0 \n",
"3 0 ⋯ 0 0 0 0 0 0 \n",
"4 0 ⋯ 0 0 0 0 0 0 \n",
"5 0 ⋯ 0 0 0 0 0 0 \n",
" yam yeast yogurt zucchini\n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"5 0 0 1 0 "
],
"text/markdown": [
"\n",
"A tibble: 5 × 381\n",
"\n",
"| cuisine &lt;fct&gt; | almond &lt;dbl&gt; | angelica &lt;dbl&gt; | anise &lt;dbl&gt; | anise_seed &lt;dbl&gt; | apple &lt;dbl&gt; | apple_brandy &lt;dbl&gt; | apricot &lt;dbl&gt; | armagnac &lt;dbl&gt; | artemisia &lt;dbl&gt; | ⋯ ⋯ | whiskey &lt;dbl&gt; | white_bread &lt;dbl&gt; | white_wine &lt;dbl&gt; | whole_grain_wheat_flour &lt;dbl&gt; | wine &lt;dbl&gt; | wood &lt;dbl&gt; | yam &lt;dbl&gt; | yeast &lt;dbl&gt; | yogurt &lt;dbl&gt; | zucchini &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 381\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
" cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
" <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & ⋯ & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 381</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>almond</th><th scope=col>angelica</th><th scope=col>anise</th><th scope=col>anise_seed</th><th scope=col>apple</th><th scope=col>apple_brandy</th><th scope=col>apricot</th><th scope=col>armagnac</th><th scope=col>artemisia</th><th scope=col>⋯</th><th scope=col>whiskey</th><th scope=col>white_bread</th><th scope=col>white_wine</th><th scope=col>whole_grain_wheat_flour</th><th scope=col>wine</th><th scope=col>wood</th><th scope=col>yam</th><th scope=col>yeast</th><th scope=col>yogurt</th><th scope=col>zucchini</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>⋯</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine n \n",
"1 korean 799\n",
"2 indian 598\n",
"3 chinese 442\n",
"4 japanese 320\n",
"5 thai 289"
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | n &lt;int&gt; |\n",
"|---|---|\n",
"| korean | 799 |\n",
"| indian | 598 |\n",
"| chinese | 442 |\n",
"| japanese | 320 |\n",
"| thai | 289 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & n\\\\\n",
" <fct> & <int>\\\\\n",
"\\hline\n",
"\t korean & 799\\\\\n",
"\t indian & 598\\\\\n",
"\t chinese & 442\\\\\n",
"\t japanese & 320\\\\\n",
"\t thai & 289\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>n</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>korean </td><td>799</td></tr>\n",
"\t<tr><td>indian </td><td>598</td></tr>\n",
"\t<tr><td>chinese </td><td>442</td></tr>\n",
"\t<tr><td>japanese</td><td>320</td></tr>\n",
"\t<tr><td>thai </td><td>289</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 735
},
"id": "jhCrrH22IWVR",
"outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c"
}
},
{
"cell_type": "markdown",
"source": [
"ยอดเยี่ยม! ตอนนี้ถึงเวลาที่จะแบ่งข้อมูล โดยให้ 70% ของข้อมูลไปที่ชุดการฝึกอบรม และ 30% ไปที่ชุดการทดสอบ เราจะใช้เทคนิค `stratification` ในการแบ่งข้อมูลเพื่อ `รักษาสัดส่วนของแต่ละประเภทอาหาร` ในชุดข้อมูลการฝึกอบรมและการตรวจสอบ\n",
"\n",
"[rsample](https://rsample.tidymodels.org/), แพ็กเกจใน Tidymodels, ให้โครงสร้างสำหรับการแบ่งข้อมูลและการสุ่มตัวอย่างที่มีประสิทธิภาพ:\n"
],
"metadata": {
"id": "AYTjVyajIdny"
}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"# Load the core Tidymodels packages into R session\r\n",
"library(tidymodels)\r\n",
"\r\n",
"# Create split specification\r\n",
"set.seed(2056)\r\n",
"cuisines_split <- initial_split(data = df_select,\r\n",
" strata = cuisine,\r\n",
" prop = 0.7)\r\n",
"\r\n",
"# Extract the data in each split\r\n",
"cuisines_train <- training(cuisines_split)\r\n",
"cuisines_test <- testing(cuisines_split)\r\n",
"\r\n",
"# Print the number of cases in each split\r\n",
"cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n",
" \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n",
"\r\n",
"# Display the first few rows of the training set\r\n",
"cuisines_train %>% \r\n",
" slice_head(n = 5)\r\n",
"\r\n",
"\r\n",
"# Display distribution of cuisines in the training set\r\n",
"cuisines_train %>% \r\n",
" count(cuisine) %>% \r\n",
" arrange(desc(n))"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Training cases: 1712\n",
"Test cases: 736"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
"1 chinese 0 0 0 0 0 0 0 0 \n",
"2 chinese 0 0 0 0 0 0 0 0 \n",
"3 chinese 0 0 0 0 0 0 0 0 \n",
"4 chinese 0 0 0 0 0 0 0 0 \n",
"5 chinese 0 0 0 0 0 0 0 0 \n",
" artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
"1 0 ⋯ 0 0 0 0 1 0 \n",
"2 0 ⋯ 0 0 0 0 1 0 \n",
"3 0 ⋯ 0 0 0 0 0 0 \n",
"4 0 ⋯ 0 0 0 0 0 0 \n",
"5 0 ⋯ 0 0 0 0 0 0 \n",
" yam yeast yogurt zucchini\n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"5 0 0 0 0 "
],
"text/markdown": [
"\n",
"A tibble: 5 × 381\n",
"\n",
"| cuisine &lt;fct&gt; | almond &lt;dbl&gt; | angelica &lt;dbl&gt; | anise &lt;dbl&gt; | anise_seed &lt;dbl&gt; | apple &lt;dbl&gt; | apple_brandy &lt;dbl&gt; | apricot &lt;dbl&gt; | armagnac &lt;dbl&gt; | artemisia &lt;dbl&gt; | ⋯ ⋯ | whiskey &lt;dbl&gt; | white_bread &lt;dbl&gt; | white_wine &lt;dbl&gt; | whole_grain_wheat_flour &lt;dbl&gt; | wine &lt;dbl&gt; | wood &lt;dbl&gt; | yam &lt;dbl&gt; | yeast &lt;dbl&gt; | yogurt &lt;dbl&gt; | zucchini &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 381\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
" cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
" <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & ⋯ & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 381</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>almond</th><th scope=col>angelica</th><th scope=col>anise</th><th scope=col>anise_seed</th><th scope=col>apple</th><th scope=col>apple_brandy</th><th scope=col>apricot</th><th scope=col>armagnac</th><th scope=col>artemisia</th><th scope=col>⋯</th><th scope=col>whiskey</th><th scope=col>white_bread</th><th scope=col>white_wine</th><th scope=col>whole_grain_wheat_flour</th><th scope=col>wine</th><th scope=col>wood</th><th scope=col>yam</th><th scope=col>yeast</th><th scope=col>yogurt</th><th scope=col>zucchini</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>⋯</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine n \n",
"1 korean 559\n",
"2 indian 418\n",
"3 chinese 309\n",
"4 japanese 224\n",
"5 thai 202"
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | n &lt;int&gt; |\n",
"|---|---|\n",
"| korean | 559 |\n",
"| indian | 418 |\n",
"| chinese | 309 |\n",
"| japanese | 224 |\n",
"| thai | 202 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & n\\\\\n",
" <fct> & <int>\\\\\n",
"\\hline\n",
"\t korean & 559\\\\\n",
"\t indian & 418\\\\\n",
"\t chinese & 309\\\\\n",
"\t japanese & 224\\\\\n",
"\t thai & 202\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>n</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>korean </td><td>559</td></tr>\n",
"\t<tr><td>indian </td><td>418</td></tr>\n",
"\t<tr><td>chinese </td><td>309</td></tr>\n",
"\t<tr><td>japanese</td><td>224</td></tr>\n",
"\t<tr><td>thai </td><td>202</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 535
},
"id": "w5FWIkEiIjdN",
"outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df"
}
},
{
"cell_type": "markdown",
"source": [
"## 2. จัดการกับข้อมูลที่ไม่สมดุล\n",
"\n",
"คุณอาจสังเกตเห็นในชุดข้อมูลต้นฉบับรวมถึงชุดข้อมูลการฝึกของเรา ว่ามีการกระจายจำนวนของประเภทอาหารที่ไม่เท่ากันอย่างมาก อาหารเกาหลีมีจำนวน *เกือบ* 3 เท่าของอาหารไทย ข้อมูลที่ไม่สมดุลมักส่งผลเสียต่อประสิทธิภาพของโมเดล หลายโมเดลทำงานได้ดีที่สุดเมื่อจำนวนตัวอย่างมีความเท่ากัน และดังนั้นจึงมักมีปัญหาเมื่อข้อมูลไม่สมดุล\n",
"\n",
"มีวิธีหลัก ๆ สองวิธีในการจัดการกับชุดข้อมูลที่ไม่สมดุล:\n",
"\n",
"- เพิ่มตัวอย่างในกลุ่มที่มีจำนวนน้อย: `Over-sampling` เช่น การใช้ SMOTE algorithm ซึ่งสร้างตัวอย่างใหม่ในกลุ่มที่มีจำนวนน้อยโดยใช้เพื่อนบ้านที่ใกล้เคียงของกรณีเหล่านั้น\n",
"\n",
"- ลบตัวอย่างในกลุ่มที่มีจำนวนมาก: `Under-sampling`\n",
"\n",
"ในบทเรียนก่อนหน้านี้ เราได้แสดงวิธีจัดการกับชุดข้อมูลที่ไม่สมดุลโดยใช้ `recipe` ซึ่งสามารถคิดได้ว่าเป็นแผนงานที่อธิบายขั้นตอนที่ควรนำไปใช้กับชุดข้อมูลเพื่อเตรียมให้พร้อมสำหรับการวิเคราะห์ข้อมูล ในกรณีของเรา เราต้องการให้มีการกระจายจำนวนประเภทอาหารที่เท่ากันใน `training set` ของเรา มาเริ่มกันเลย!\n"
],
"metadata": {
"id": "daBi9qJNIwqW"
}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"# Load themis package for dealing with imbalanced data\r\n",
"library(themis)\r\n",
"\r\n",
"# Create a recipe for preprocessing training data\r\n",
"cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n",
" step_smote(cuisine)\r\n",
"\r\n",
"# Print recipe\r\n",
"cuisines_recipe"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Data Recipe\n",
"\n",
"Inputs:\n",
"\n",
" role #variables\n",
" outcome 1\n",
" predictor 380\n",
"\n",
"Operations:\n",
"\n",
"SMOTE based on cuisine"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 200
},
"id": "Az6LFBGxI1X0",
"outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6"
}
},
{
"cell_type": "markdown",
"source": [
"คุณสามารถยืนยันได้เลย (โดยใช้ prep+bake) ว่าสูตรนี้จะทำงานตามที่คุณคาดหวัง - โดยที่ป้ายกำกับอาหารทั้งหมดมี `559` การสังเกตการณ์\n",
"\n",
"เนื่องจากเราจะใช้สูตรนี้เป็นตัวเตรียมข้อมูลสำหรับการสร้างแบบจำลอง `workflow()` จะทำหน้าที่เตรียมและประมวลผลข้อมูลทั้งหมดให้เรา ดังนั้นเราจะไม่ต้องคำนวณสูตรด้วยตัวเอง\n",
"\n",
"ตอนนี้เราพร้อมที่จะฝึกโมเดลแล้ว 👩‍💻👨‍💻!\n",
"\n",
"## 3. การเลือกตัวจำแนกประเภทของคุณ\n",
"\n",
"<p >\n",
" <img src=\"../../images/parsnip.jpg\"\n",
" width=\"600\"/>\n",
" <figcaption>ภาพประกอบโดย @allison_horst</figcaption>\n"
],
"metadata": {
"id": "NBL3PqIWJBBB"
}
},
{
"cell_type": "markdown",
"source": [
"ตอนนี้เราต้องตัดสินใจว่าจะใช้อัลกอริทึมใดสำหรับงานนี้ 🤔\n",
"\n",
"ใน Tidymodels, [`parsnip package`](https://parsnip.tidymodels.org/index.html) มีอินเทอร์เฟซที่สม่ำเสมอสำหรับการทำงานกับโมเดลในหลายๆ engine (แพ็กเกจ) โปรดดูเอกสารของ parsnip เพื่อสำรวจ [ประเภทโมเดลและ engine](https://www.tidymodels.org/find/parsnip/#models) และ [อาร์กิวเมนต์ของโมเดล](https://www.tidymodels.org/find/parsnip/#model-args) ที่เกี่ยวข้อง ความหลากหลายอาจทำให้สับสนในตอนแรก ตัวอย่างเช่น วิธีการต่อไปนี้ล้วนเป็นเทคนิคการจัดประเภท:\n",
"\n",
"- โมเดลการจัดประเภทแบบใช้กฎ C5.0\n",
"\n",
"- โมเดลการจำแนกแบบยืดหยุ่น\n",
"\n",
"- โมเดลการจำแนกเชิงเส้น\n",
"\n",
"- โมเดลการจำแนกแบบมีการปรับค่า\n",
"\n",
"- โมเดลการถดถอยโลจิสติก\n",
"\n",
"- โมเดลการถดถอยแบบหลายตัวแปร\n",
"\n",
"- โมเดล Naive Bayes\n",
"\n",
"- Support Vector Machines\n",
"\n",
"- Nearest Neighbors\n",
"\n",
"- Decision Trees\n",
"\n",
"- Ensemble methods\n",
"\n",
"- Neural Networks\n",
"\n",
"รายการยังคงมีต่อไป!\n",
"\n",
"### **จะเลือกตัวจัดประเภทตัวไหนดี?**\n",
"\n",
"แล้วเราควรเลือกตัวจัดประเภทตัวไหน? บ่อยครั้ง การลองใช้หลายๆ ตัวและมองหาผลลัพธ์ที่ดีเป็นวิธีการทดสอบ\n",
"\n",
"> AutoML แก้ปัญหานี้ได้อย่างลงตัวโดยการเปรียบเทียบในระบบคลาวด์ ทำให้คุณสามารถเลือกอัลกอริทึมที่ดีที่สุดสำหรับข้อมูลของคุณ ลองใช้ [ที่นี่](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n",
"\n",
"นอกจากนี้ การเลือกตัวจัดประเภทขึ้นอยู่กับปัญหาของเรา ตัวอย่างเช่น เมื่อผลลัพธ์สามารถจัดหมวดหมู่ได้เป็น `มากกว่าสองคลาส` เช่นในกรณีของเรา คุณต้องใช้ `อัลกอริทึมการจัดประเภทแบบหลายคลาส` แทนที่จะเป็น `การจัดประเภทแบบไบนารี`\n",
"\n",
"### **วิธีที่ดีกว่า**\n",
"\n",
"วิธีที่ดีกว่าการเดาแบบสุ่มคือการทำตามแนวคิดใน [ML Cheat sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) ที่สามารถดาวน์โหลดได้ ที่นี่เราพบว่า สำหรับปัญหาแบบหลายคลาสของเรา เรามีตัวเลือกบางอย่าง:\n",
"\n",
"<p >\n",
" <img src=\"../../images/cheatsheet.png\"\n",
" width=\"500\"/>\n",
" <figcaption>ส่วนหนึ่งของ Algorithm Cheat Sheet ของ Microsoft ที่แสดงตัวเลือกการจัดประเภทแบบหลายคลาส</figcaption>\n"
],
"metadata": {
"id": "a6DLAZ3vJZ14"
}
},
{
"cell_type": "markdown",
"source": [
"### **เหตุผล**\n",
"\n",
"ลองมาดูว่ามีวิธีการใดบ้างที่เราสามารถใช้ได้ตามข้อจำกัดที่กำหนดไว้:\n",
"\n",
"- **โครงข่ายประสาทเทียมเชิงลึกหนักเกินไป** เนื่องจากเรามีชุดข้อมูลที่สะอาดแต่มีขนาดเล็ก และเรากำลังฝึกโมเดลในเครื่องผ่านโน้ตบุ๊ก โครงข่ายประสาทเทียมเชิงลึกจึงไม่เหมาะสมสำหรับงานนี้\n",
"\n",
"- **ไม่ใช้ตัวจำแนกแบบสองคลาส** เราไม่ได้ใช้ตัวจำแนกแบบสองคลาส ดังนั้นจึงตัดวิธี one-vs-all ออกไป\n",
"\n",
"- **ต้นไม้ตัดสินใจหรือการถดถอยโลจิสติกอาจใช้ได้** ต้นไม้ตัดสินใจอาจเหมาะสม หรือการถดถอยพหุคลาส/การถดถอยโลจิสติกแบบพหุคลาสสำหรับข้อมูลหลายคลาส\n",
"\n",
"- **ต้นไม้ตัดสินใจแบบบูสต์สำหรับพหุคลาสแก้ปัญหาคนละแบบ** ต้นไม้ตัดสินใจแบบบูสต์สำหรับพหุคลาสเหมาะสำหรับงานที่ไม่ใช่พารามิเตอร์ เช่น งานที่ออกแบบมาเพื่อสร้างการจัดอันดับ ดังนั้นจึงไม่เหมาะกับเรา\n",
"\n",
"โดยปกติแล้ว ก่อนที่จะเริ่มใช้โมเดลการเรียนรู้ของเครื่องที่ซับซ้อนขึ้น เช่น วิธีการแบบเอนเซมเบิล ควรเริ่มจากโมเดลที่ง่ายที่สุดเพื่อทำความเข้าใจภาพรวมของข้อมูล ดังนั้นในบทเรียนนี้ เราจะเริ่มต้นด้วยโมเดล `การถดถอยพหุคลาส` \n",
"\n",
"> การถดถอยโลจิสติกเป็นเทคนิคที่ใช้เมื่อผลลัพธ์เป็นตัวแปรเชิงหมวดหมู่ (หรือเชิงนาม) สำหรับการถดถอยโลจิสติกแบบไบนารี จำนวนตัวแปรผลลัพธ์จะมีสองค่า ในขณะที่การถดถอยโลจิสติกแบบพหุคลาสจะมีจำนวนตัวแปรผลลัพธ์มากกว่าสองค่า ดูเพิ่มเติมได้ที่ [Advanced Regression Methods](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html)\n",
"\n",
"## 4. ฝึกและประเมินโมเดลการถดถอยโลจิสติกแบบพหุคลาส\n",
"\n",
"ใน Tidymodels, `parsnip::multinom_reg()` ใช้กำหนดโมเดลที่ใช้ตัวทำนายเชิงเส้นเพื่อทำนายข้อมูลหลายคลาสโดยใช้การแจกแจงแบบพหุคลาส ดู `?multinom_reg()` เพื่อดูวิธี/เอนจินต่าง ๆ ที่คุณสามารถใช้ในการปรับโมเดลนี้\n",
"\n",
"สำหรับตัวอย่างนี้ เราจะปรับโมเดลการถดถอยพหุคลาสผ่านเอนจินเริ่มต้น [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf)\n",
"\n",
"> ฉันเลือกค่า `penalty` แบบสุ่ม มีวิธีที่ดีกว่าในการเลือกค่านี้ เช่น การใช้ `resampling` และ `tuning` โมเดล ซึ่งเราจะพูดถึงในภายหลัง\n",
">\n",
"> ดูเพิ่มเติมที่ [Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/) หากคุณต้องการเรียนรู้เพิ่มเติมเกี่ยวกับการปรับแต่งพารามิเตอร์ของโมเดล\n"
],
"metadata": {
"id": "gWMsVcbBJemu"
}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"# Create a multinomial regression model specification\r\n",
"mr_spec <- multinom_reg(penalty = 1) %>% \r\n",
" set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n",
" set_mode(\"classification\")\r\n",
"\r\n",
"# Print model specification\r\n",
"mr_spec"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Multinomial Regression Model Specification (classification)\n",
"\n",
"Main Arguments:\n",
" penalty = 1\n",
"\n",
"Engine-Specific Arguments:\n",
" MaxNWts = 2086\n",
"\n",
"Computational engine: nnet \n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 166
},
"id": "Wq_fcyQiJvfG",
"outputId": "c30449c7-3864-4be7-f810-72a003743e2d"
}
},
{
"cell_type": "markdown",
"source": [
"เยี่ยมมาก 🥳! ตอนนี้เรามีสูตรและสเปคของโมเดลแล้ว เราต้องหาวิธีรวมสิ่งเหล่านี้เข้าด้วยกันเป็นวัตถุที่จะช่วยในการเตรียมข้อมูลเบื้องต้น จากนั้นจึงปรับโมเดลกับข้อมูลที่ผ่านการเตรียมแล้ว และยังสามารถรองรับกิจกรรมหลังการประมวลผลได้อีกด้วย ใน Tidymodels วัตถุที่สะดวกนี้เรียกว่า [`workflow`](https://workflows.tidymodels.org/) ซึ่งจะเก็บส่วนประกอบของการสร้างโมเดลของคุณไว้อย่างสะดวก! สิ่งนี้คือสิ่งที่เราเรียกว่า *pipelines* ใน *Python* \n",
"\n",
"ดังนั้น มาเริ่มรวมทุกอย่างเข้าด้วยกันใน workflow กันเถอะ!📦\n"
],
"metadata": {
"id": "NlSbzDfgJ0zh"
}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"# Bundle recipe and model specification\r\n",
"mr_wf <- workflow() %>% \r\n",
" add_recipe(cuisines_recipe) %>% \r\n",
" add_model(mr_spec)\r\n",
"\r\n",
"# Print out workflow\r\n",
"mr_wf"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"══ Workflow ════════════════════════════════════════════════════════════════════\n",
"\u001b[3mPreprocessor:\u001b[23m Recipe\n",
"\u001b[3mModel:\u001b[23m multinom_reg()\n",
"\n",
"── Preprocessor ────────────────────────────────────────────────────────────────\n",
"1 Recipe Step\n",
"\n",
"• step_smote()\n",
"\n",
"── Model ───────────────────────────────────────────────────────────────────────\n",
"Multinomial Regression Model Specification (classification)\n",
"\n",
"Main Arguments:\n",
" penalty = 1\n",
"\n",
"Engine-Specific Arguments:\n",
" MaxNWts = 2086\n",
"\n",
"Computational engine: nnet \n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 333
},
"id": "Sc1TfPA4Ke3_",
"outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c"
}
},
{
"cell_type": "markdown",
"source": [
"เวิร์กโฟลว์ 👌👌! **`workflow()`** สามารถปรับให้เหมาะสมได้ในลักษณะเดียวกับที่โมเดลสามารถทำได้ ดังนั้น ถึงเวลาฝึกโมเดลแล้ว!\n"
],
"metadata": {
"id": "TNQ8i85aKf9L"
}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"# Train a multinomial regression model\n",
"mr_fit <- fit(object = mr_wf, data = cuisines_train)\n",
"\n",
"mr_fit"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"══ Workflow [trained] ══════════════════════════════════════════════════════════\n",
"\u001b[3mPreprocessor:\u001b[23m Recipe\n",
"\u001b[3mModel:\u001b[23m multinom_reg()\n",
"\n",
"── Preprocessor ────────────────────────────────────────────────────────────────\n",
"1 Recipe Step\n",
"\n",
"• step_smote()\n",
"\n",
"── Model ───────────────────────────────────────────────────────────────────────\n",
"Call:\n",
"nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n",
" trace = FALSE)\n",
"\n",
"Coefficients:\n",
" (Intercept) almond angelica anise anise_seed apple\n",
"indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n",
"japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n",
"korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n",
"thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n",
" apple_brandy apricot armagnac artemisia artichoke asparagus\n",
"indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n",
"japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n",
"korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n",
"thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n",
" avocado bacon baked_potato balm banana barley\n",
"indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n",
"japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n",
"korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n",
"thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n",
" bartlett_pear basil bay bean beech\n",
"indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n",
"japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n",
"korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n",
"thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n",
" beef beef_broth beef_liver beer beet\n",
"indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n",
"japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n",
"korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n",
"thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n",
" bell_pepper bergamot berry bitter_orange black_bean\n",
"indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n",
"japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n",
"korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n",
"thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n",
" black_currant black_mustard_seed_oil black_pepper black_raspberry\n",
"indian 0 0.38935801 -0.4453495 0\n",
"japanese 0 -0.05452887 -0.5440869 0\n",
"korean 0 -0.03929970 0.8025454 0\n",
"thai 0 -0.21498372 -0.9854806 0\n",
" black_sesame_seed black_tea blackberry blackberry_brandy\n",
"indian -0.2759246 0.3079977 0.191256164 0\n",
"japanese -0.6101687 -0.1671913 -0.118915977 0\n",
"korean 1.5197674 -0.3036261 -0.007729435 0\n",
"thai -0.1755656 -0.1487033 -0.002983296 0\n",
" blue_cheese blueberry bone_oil bourbon_whiskey brandy\n",
"indian 0 0.216164294 -0.2276744 0 0.22427587\n",
"japanese 0 -0.119186087 0.3913019 0 -0.15595599\n",
"korean 0 -0.007821986 0.2854487 0 -0.02562342\n",
"thai 0 -0.004947048 -0.0253658 0 -0.05715244\n",
"\n",
"...\n",
"and 308 more lines."
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "GMbdfVmTKkJI",
"outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e"
}
},
{
"cell_type": "markdown",
"source": [
"ผลลัพธ์จะแสดงค่าสัมประสิทธิ์ที่โมเดลได้เรียนรู้ระหว่างการฝึก\n",
"\n",
"### ประเมินผลโมเดลที่ผ่านการฝึก\n",
"\n",
"ถึงเวลาที่จะดูว่าโมเดลทำงานได้ดีแค่ไหน 📏 โดยการประเมินผลบนชุดทดสอบ! มาเริ่มต้นด้วยการสร้างการคาดการณ์บนชุดทดสอบกันเถอะ!\n"
],
"metadata": {
"id": "tt2BfOxrKmcJ"
}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"# Make predictions on the test set\n",
"results <- cuisines_test %>% select(cuisine) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n",
"\n",
"# Print out results\n",
"results %>% \n",
" slice_head(n = 5)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine .pred_class\n",
"1 indian thai \n",
"2 indian indian \n",
"3 indian indian \n",
"4 indian indian \n",
"5 indian indian "
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | .pred_class &lt;fct&gt; |\n",
"|---|---|\n",
"| indian | thai |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & .pred\\_class\\\\\n",
" <fct> & <fct>\\\\\n",
"\\hline\n",
"\t indian & thai \\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>.pred_class</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;fct&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>thai </td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 248
},
"id": "CqtckvtsKqax",
"outputId": "e57fe557-6a68-4217-fe82-173328c5436d"
}
},
{
"cell_type": "markdown",
"source": [
"งานยอดเยี่ยม! ใน Tidymodels การประเมินประสิทธิภาพของโมเดลสามารถทำได้โดยใช้ [yardstick](https://yardstick.tidymodels.org/) - แพ็กเกจที่ใช้วัดประสิทธิภาพของโมเดลด้วยตัวชี้วัดประสิทธิภาพ เช่นเดียวกับที่เราได้ทำในบทเรียนการถดถอยโลจิสติก มาเริ่มต้นด้วยการคำนวณเมทริกซ์ความสับสนกันเถอะ\n"
],
"metadata": {
"id": "8w5N6XsBKss7"
}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"# Confusion matrix for categorical data\n",
"conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" Truth\n",
"Prediction chinese indian japanese korean thai\n",
" chinese 83 1 8 15 10\n",
" indian 4 163 1 2 6\n",
" japanese 21 5 73 25 1\n",
" korean 15 0 11 191 0\n",
" thai 10 11 3 7 70"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 133
},
"id": "YvODvsLkK0iG",
"outputId": "bb69da84-1266-47ad-b174-d43b88ca2988"
}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"id": "c0HfPL16Lr6U"
}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
"update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n",
"# Visualize confusion matrix\n",
"results %>% \n",
" conf_mat(cuisine, .pred_class) %>% \n",
" autoplot(type = \"heatmap\")"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"plot without title"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg=="
},
"metadata": {
"image/png": {
"width": 420,
"height": 420
}
}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 436
},
"id": "HsAtwukyLsvt",
"outputId": "3032a224-a2c8-4270-b4f2-7bb620317400"
}
},
{
"cell_type": "markdown",
"source": [
"สี่เหลี่ยมที่มีสีเข้มในกราฟเมทริกซ์ความสับสนแสดงถึงจำนวนกรณีที่สูง และคุณน่าจะเห็นเส้นทแยงมุมของสี่เหลี่ยมสีเข้มที่บ่งบอกถึงกรณีที่ป้ายกำกับที่คาดการณ์และป้ายกำกับจริงตรงกัน\n",
"\n",
"ตอนนี้เรามาคำนวณสถิติสรุปสำหรับเมทริกซ์ความสับสนกัน\n"
],
"metadata": {
"id": "oOJC87dkLwPr"
}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"# Summary stats for confusion matrix\n",
"conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n",
"summary()"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" .metric .estimator .estimate\n",
"1 accuracy multiclass 0.7880435\n",
"2 kap multiclass 0.7276583\n",
"3 sens macro 0.7780927\n",
"4 spec macro 0.9477598\n",
"5 ppv macro 0.7585583\n",
"6 npv macro 0.9460080\n",
"7 mcc multiclass 0.7292724\n",
"8 j_index macro 0.7258524\n",
"9 bal_accuracy macro 0.8629262\n",
"10 detection_prevalence macro 0.2000000\n",
"11 precision macro 0.7585583\n",
"12 recall macro 0.7780927\n",
"13 f_meas macro 0.7641862"
],
"text/markdown": [
"\n",
"A tibble: 13 × 3\n",
"\n",
"| .metric &lt;chr&gt; | .estimator &lt;chr&gt; | .estimate &lt;dbl&gt; |\n",
"|---|---|---|\n",
"| accuracy | multiclass | 0.7880435 |\n",
"| kap | multiclass | 0.7276583 |\n",
"| sens | macro | 0.7780927 |\n",
"| spec | macro | 0.9477598 |\n",
"| ppv | macro | 0.7585583 |\n",
"| npv | macro | 0.9460080 |\n",
"| mcc | multiclass | 0.7292724 |\n",
"| j_index | macro | 0.7258524 |\n",
"| bal_accuracy | macro | 0.8629262 |\n",
"| detection_prevalence | macro | 0.2000000 |\n",
"| precision | macro | 0.7585583 |\n",
"| recall | macro | 0.7780927 |\n",
"| f_meas | macro | 0.7641862 |\n",
"\n"
],
"text/latex": [
"A tibble: 13 × 3\n",
"\\begin{tabular}{lll}\n",
" .metric & .estimator & .estimate\\\\\n",
" <chr> & <chr> & <dbl>\\\\\n",
"\\hline\n",
"\t accuracy & multiclass & 0.7880435\\\\\n",
"\t kap & multiclass & 0.7276583\\\\\n",
"\t sens & macro & 0.7780927\\\\\n",
"\t spec & macro & 0.9477598\\\\\n",
"\t ppv & macro & 0.7585583\\\\\n",
"\t npv & macro & 0.9460080\\\\\n",
"\t mcc & multiclass & 0.7292724\\\\\n",
"\t j\\_index & macro & 0.7258524\\\\\n",
"\t bal\\_accuracy & macro & 0.8629262\\\\\n",
"\t detection\\_prevalence & macro & 0.2000000\\\\\n",
"\t precision & macro & 0.7585583\\\\\n",
"\t recall & macro & 0.7780927\\\\\n",
"\t f\\_meas & macro & 0.7641862\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 13 × 3</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>.metric</th><th scope=col>.estimator</th><th scope=col>.estimate</th></tr>\n",
"\t<tr><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>accuracy </td><td>multiclass</td><td>0.7880435</td></tr>\n",
"\t<tr><td>kap </td><td>multiclass</td><td>0.7276583</td></tr>\n",
"\t<tr><td>sens </td><td>macro </td><td>0.7780927</td></tr>\n",
"\t<tr><td>spec </td><td>macro </td><td>0.9477598</td></tr>\n",
"\t<tr><td>ppv </td><td>macro </td><td>0.7585583</td></tr>\n",
"\t<tr><td>npv </td><td>macro </td><td>0.9460080</td></tr>\n",
"\t<tr><td>mcc </td><td>multiclass</td><td>0.7292724</td></tr>\n",
"\t<tr><td>j_index </td><td>macro </td><td>0.7258524</td></tr>\n",
"\t<tr><td>bal_accuracy </td><td>macro </td><td>0.8629262</td></tr>\n",
"\t<tr><td>detection_prevalence</td><td>macro </td><td>0.2000000</td></tr>\n",
"\t<tr><td>precision </td><td>macro </td><td>0.7585583</td></tr>\n",
"\t<tr><td>recall </td><td>macro </td><td>0.7780927</td></tr>\n",
"\t<tr><td>f_meas </td><td>macro </td><td>0.7641862</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 494
},
"id": "OYqetUyzL5Wz",
"outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6"
}
},
{
"cell_type": "markdown",
"source": [
"ถ้าเรามุ่งเน้นไปที่ตัวชี้วัดบางอย่าง เช่น ความแม่นยำ, ความไว, ppv เราก็ไม่ได้เริ่มต้นแย่เลย 🥳!\n",
"\n",
"## 4. เจาะลึกลงไปอีก\n",
"\n",
"ลองถามคำถามที่ละเอียดอ่อนสักข้อ: เกณฑ์อะไรที่ใช้ในการตัดสินใจเลือกประเภทของอาหารเป็นผลลัพธ์ที่คาดการณ์?\n",
"\n",
"จริง ๆ แล้ว อัลกอริทึมการเรียนรู้ของเครื่องเชิงสถิติ เช่น logistic regression จะอิงอยู่บน `ความน่าจะเป็น`; ดังนั้นสิ่งที่ตัวจำแนกประเภทคาดการณ์จริง ๆ ก็คือการแจกแจงความน่าจะเป็นในชุดของผลลัพธ์ที่เป็นไปได้ คลาสที่มีความน่าจะเป็นสูงสุดจะถูกเลือกเป็นผลลัพธ์ที่มีแนวโน้มมากที่สุดสำหรับการสังเกตที่กำหนด\n",
"\n",
"ลองมาดูตัวอย่างนี้ในทางปฏิบัติโดยการทำทั้งการคาดการณ์แบบคลาสที่ชัดเจนและการคาดการณ์แบบความน่าจะเป็น\n"
],
"metadata": {
"id": "43t7vz8vMJtW"
}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"# Make hard class prediction and probabilities\n",
"results_prob <- cuisines_test %>%\n",
" select(cuisine) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n",
"\n",
"# Print out results\n",
"results_prob %>% \n",
" slice_head(n = 5)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n",
"1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n",
"2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n",
"3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n",
"4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n",
"5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n",
" .pred_thai \n",
"1 5.388194e-01\n",
"2 1.577948e-06\n",
"3 6.874989e-03\n",
"4 3.863391e-03\n",
"5 5.653283e-03"
],
"text/markdown": [
"\n",
"A tibble: 5 × 7\n",
"\n",
"| cuisine &lt;fct&gt; | .pred_class &lt;fct&gt; | .pred_chinese &lt;dbl&gt; | .pred_indian &lt;dbl&gt; | .pred_japanese &lt;dbl&gt; | .pred_korean &lt;dbl&gt; | .pred_thai &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|\n",
"| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n",
"| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n",
"| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n",
"| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n",
"| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 7\n",
"\\begin{tabular}{lllllll}\n",
" cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n",
" <fct> & <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n",
"\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n",
"\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n",
"\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n",
"\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 7</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>.pred_class</th><th scope=col>.pred_chinese</th><th scope=col>.pred_indian</th><th scope=col>.pred_japanese</th><th scope=col>.pred_korean</th><th scope=col>.pred_thai</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>thai </td><td>1.551259e-03</td><td>0.4587877</td><td>5.988039e-04</td><td>2.428503e-04</td><td>5.388194e-01</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>2.637133e-05</td><td>0.9999488</td><td>6.648651e-07</td><td>2.259993e-05</td><td>1.577948e-06</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>1.049433e-03</td><td>0.9909982</td><td>1.060937e-03</td><td>1.644947e-05</td><td>6.874989e-03</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>6.237482e-02</td><td>0.4763035</td><td>9.136702e-02</td><td>3.660913e-01</td><td>3.863391e-03</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>1.431745e-02</td><td>0.9418551</td><td>2.945239e-02</td><td>8.721782e-03</td><td>5.653283e-03</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 248
},
"id": "xdKNs-ZPMTJL",
"outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008"
}
},
{
"cell_type": "markdown",
"source": [
"✅ คุณสามารถอธิบายได้ไหมว่าทำไมโมเดลถึงมั่นใจว่าการสังเกตการณ์แรกเป็นภาษาไทย?\n",
"\n",
"## **🚀ความท้าทาย**\n",
"\n",
"ในบทเรียนนี้ คุณได้ใช้ข้อมูลที่ทำความสะอาดแล้วเพื่อสร้างโมเดลการเรียนรู้ของเครื่องที่สามารถทำนายอาหารประจำชาติได้จากชุดของส่วนผสม ลองใช้เวลาศึกษา [ตัวเลือกมากมาย](https://www.tidymodels.org/find/parsnip/#models) ที่ Tidymodels มีให้สำหรับการจัดประเภทข้อมูล และ [วิธีอื่นๆ](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) ในการปรับโมเดลการถดถอยแบบหลายตัวแปร\n",
"\n",
"#### ขอบคุณ:\n",
"\n",
"[`Allison Horst`](https://twitter.com/allison_horst/) สำหรับการสร้างภาพประกอบที่น่าทึ่งซึ่งทำให้ R ดูน่าสนใจและเข้าถึงได้มากขึ้น ค้นหาภาพประกอบเพิ่มเติมได้ที่ [แกลเลอรี](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) ของเธอ\n",
"\n",
"[Cassie Breviu](https://www.twitter.com/cassieview) และ [Jen Looper](https://www.twitter.com/jenlooper) สำหรับการสร้างเวอร์ชัน Python ดั้งเดิมของโมดูลนี้ ♥️\n",
"\n",
"<br>\n",
"อยากจะใส่มุกตลกลงไป แต่ฉันไม่เข้าใจมุกเกี่ยวกับอาหารเลย 😅\n",
"\n",
"<br>\n",
"\n",
"เรียนรู้อย่างมีความสุข,\n",
"\n",
"[Eric](https://twitter.com/ericntay), Gold Microsoft Learn Student Ambassador\n"
],
"metadata": {
"id": "2tWVHMeLMYdM"
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**ข้อจำกัดความรับผิดชอบ**: \nเอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI [Co-op Translator](https://github.com/Azure/co-op-translator) แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาต้นทางควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษามนุษย์มืออาชีพ เราจะไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้\n"
]
}
]
}