|
3 weeks ago | |
---|---|---|
.. | ||
solution | 3 weeks ago | |
README.md | 3 weeks ago | |
assignment.md | 3 weeks ago | |
notebook.ipynb | 3 weeks ago |
README.md
สร้างโมเดลการถดถอยด้วย Scikit-learn: การถดถอย 4 วิธี
อินโฟกราฟิกโดย Dasani Madipalli
แบบทดสอบก่อนเรียน
บทเรียนนี้มีในภาษา R ด้วย!
บทนำ
จนถึงตอนนี้ คุณได้สำรวจว่าการถดถอยคืออะไรโดยใช้ตัวอย่างข้อมูลจากชุดข้อมูลราคาฟักทองที่เราจะใช้ตลอดบทเรียนนี้ คุณยังได้สร้างภาพข้อมูลด้วย Matplotlib แล้ว
ตอนนี้คุณพร้อมที่จะเจาะลึกเกี่ยวกับการถดถอยสำหรับการเรียนรู้ของเครื่อง (ML) การสร้างภาพช่วยให้คุณเข้าใจข้อมูล แต่พลังที่แท้จริงของการเรียนรู้ของเครื่องมาจาก การฝึกโมเดล โมเดลถูกฝึกด้วยข้อมูลในอดีตเพื่อจับความสัมพันธ์ของข้อมูลโดยอัตโนมัติ และช่วยให้คุณคาดการณ์ผลลัพธ์สำหรับข้อมูลใหม่ที่โมเดลไม่เคยเห็นมาก่อน
ในบทเรียนนี้ คุณจะได้เรียนรู้เพิ่มเติมเกี่ยวกับการถดถอยสองประเภท: การถดถอยเชิงเส้นพื้นฐาน และ การถดถอยพหุนาม พร้อมกับคณิตศาสตร์บางส่วนที่อยู่เบื้องหลังเทคนิคเหล่านี้ โมเดลเหล่านี้จะช่วยให้เราคาดการณ์ราคาฟักทองตามข้อมูลอินพุตที่แตกต่างกัน
🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอสั้น ๆ เกี่ยวกับการถดถอยเชิงเส้น
ตลอดหลักสูตรนี้ เราสมมติว่าคุณมีความรู้ทางคณิตศาสตร์เพียงเล็กน้อย และพยายามทำให้เข้าใจง่ายสำหรับนักเรียนที่มาจากสาขาอื่น ดังนั้นโปรดสังเกตบันทึก 🧮 คำอธิบายภาพ และเครื่องมือการเรียนรู้อื่น ๆ เพื่อช่วยในการทำความเข้าใจ
ความรู้พื้นฐานที่ควรมี
ตอนนี้คุณควรคุ้นเคยกับโครงสร้างของข้อมูลฟักทองที่เรากำลังตรวจสอบ คุณสามารถค้นหาข้อมูลนี้ที่โหลดไว้ล่วงหน้าและทำความสะอาดไว้ในไฟล์ notebook.ipynb ของบทเรียนนี้ ในไฟล์นี้ ราคาฟักทองจะแสดงต่อบุชเชลใน DataFrame ใหม่ ตรวจสอบให้แน่ใจว่าคุณสามารถรันโน้ตบุ๊กเหล่านี้ในเคอร์เนลของ Visual Studio Code ได้
การเตรียมตัว
เพื่อเป็นการทบทวน คุณกำลังโหลดข้อมูลนี้เพื่อถามคำถามเกี่ยวกับข้อมูล เช่น:
- ช่วงเวลาใดที่ดีที่สุดในการซื้อฟักทอง?
- ราคาที่คาดหวังสำหรับฟักทองขนาดเล็กหนึ่งกล่องคือเท่าไร?
- ควรซื้อฟักทองในตะกร้าครึ่งบุชเชลหรือในกล่องขนาด 1 1/9 บุชเชล?
มาดำดิ่งลงไปในข้อมูลนี้กันต่อ
ในบทเรียนก่อน คุณได้สร้าง Pandas DataFrame และเติมข้อมูลบางส่วนจากชุดข้อมูลต้นฉบับ โดยการปรับมาตรฐานราคาต่อบุชเชล อย่างไรก็ตาม คุณสามารถรวบรวมข้อมูลได้เพียงประมาณ 400 จุดข้อมูล และเฉพาะในช่วงฤดูใบไม้ร่วงเท่านั้น
ลองดูข้อมูลที่โหลดไว้ล่วงหน้าในโน้ตบุ๊กที่มาพร้อมกับบทเรียนนี้ ข้อมูลถูกโหลดไว้ล่วงหน้าและมีการสร้างกราฟกระจายเบื้องต้นเพื่อแสดงข้อมูลตามเดือน บางทีเราอาจได้รายละเอียดเพิ่มเติมเกี่ยวกับลักษณะของข้อมูลโดยการทำความสะอาดข้อมูลเพิ่มเติม
เส้นการถดถอยเชิงเส้น
ตามที่คุณได้เรียนรู้ในบทเรียนที่ 1 เป้าหมายของการถดถอยเชิงเส้นคือการวาดเส้นเพื่อ:
- แสดงความสัมพันธ์ของตัวแปร แสดงความสัมพันธ์ระหว่างตัวแปร
- ทำการคาดการณ์ คาดการณ์ตำแหน่งของจุดข้อมูลใหม่ในความสัมพันธ์กับเส้นนั้นอย่างแม่นยำ
โดยทั่วไป Least-Squares Regression จะใช้ในการวาดเส้นประเภทนี้ คำว่า 'least-squares' หมายถึงการนำจุดข้อมูลทั้งหมดรอบเส้นการถดถอยมายกกำลังสองและรวมเข้าด้วยกัน โดยอุดมคติแล้ว ผลรวมสุดท้ายควรมีค่าน้อยที่สุด เพราะเราต้องการข้อผิดพลาดที่น้อยที่สุด หรือ least-squares
เราทำเช่นนี้เพราะเราต้องการสร้างโมเดลเส้นที่มีระยะทางสะสมจากจุดข้อมูลทั้งหมดน้อยที่สุด นอกจากนี้ เรายังยกกำลังสองก่อนรวมกันเพราะเราสนใจขนาดของค่ามากกว่าทิศทาง
🧮 แสดงคณิตศาสตร์ให้ฉันดู
เส้นนี้เรียกว่า เส้นที่เหมาะสมที่สุด สามารถแสดงได้ด้วย สมการ:
Y = a + bX
X
คือ 'ตัวแปรอธิบาย'Y
คือ 'ตัวแปรตาม' ความชันของเส้นคือb
และa
คือจุดตัดแกน Y ซึ่งหมายถึงค่าของY
เมื่อX = 0
ขั้นแรก คำนวณความชัน
b
อินโฟกราฟิกโดย Jen Looperกล่าวอีกนัยหนึ่ง และอ้างอิงจากคำถามดั้งเดิมของข้อมูลฟักทอง: "คาดการณ์ราคาฟักทองต่อบุชเชลตามเดือน"
X
จะหมายถึงราคา และY
จะหมายถึงเดือนที่ขายคำนวณค่าของ Y ถ้าคุณจ่ายประมาณ $4 นั่นอาจเป็นเดือนเมษายน! อินโฟกราฟิกโดย Jen Looper
คณิตศาสตร์ที่คำนวณเส้นต้องแสดงความชันของเส้น ซึ่งขึ้นอยู่กับจุดตัดแกนด้วย หรือค่าที่
Y
อยู่เมื่อX = 0
คุณสามารถดูวิธีการคำนวณค่าต่าง ๆ เหล่านี้ได้ที่เว็บไซต์ Math is Fun และเยี่ยมชม เครื่องคำนวณ Least-squares เพื่อดูว่าค่าต่าง ๆ ส่งผลต่อเส้นอย่างไร
ความสัมพันธ์
อีกคำหนึ่งที่ควรเข้าใจคือ ค่าสัมประสิทธิ์ความสัมพันธ์ ระหว่างตัวแปร X และ Y ที่กำหนด การใช้กราฟกระจาย คุณสามารถมองเห็นค่าสัมประสิทธิ์นี้ได้อย่างรวดเร็ว กราฟที่มีจุดข้อมูลกระจายเป็นเส้นเรียบมีความสัมพันธ์สูง แต่กราฟที่มีจุดข้อมูลกระจายไปทั่วระหว่าง X และ Y มีความสัมพันธ์ต่ำ
โมเดลการถดถอยเชิงเส้นที่ดีจะเป็นโมเดลที่มีค่าสัมประสิทธิ์ความสัมพันธ์สูง (ใกล้ 1 มากกว่า 0) โดยใช้วิธี Least-Squares Regression พร้อมเส้นการถดถอย
✅ รันโน้ตบุ๊กที่มาพร้อมกับบทเรียนนี้และดูกราฟกระจายของข้อมูลเดือนกับราคา ข้อมูลที่เชื่อมโยงเดือนกับราคาสำหรับการขายฟักทองดูเหมือนจะมีความสัมพันธ์สูงหรือต่ำตามการตีความด้วยสายตาของคุณ? ความสัมพันธ์นั้นเปลี่ยนไปหรือไม่หากคุณใช้มาตรการที่ละเอียดกว่า เช่น วันในปี (เช่น จำนวนวันตั้งแต่ต้นปี)?
ในโค้ดด้านล่าง เราจะสมมติว่าเราได้ทำความสะอาดข้อมูลแล้ว และได้ DataFrame ที่เรียกว่า new_pumpkins
ซึ่งมีลักษณะดังนี้:
ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price |
---|---|---|---|---|---|---|---|---|
70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 |
71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 |
72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 |
73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545 |
74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 |
โค้ดสำหรับทำความสะอาดข้อมูลมีอยู่ใน
notebook.ipynb
เราได้ทำตามขั้นตอนการทำความสะอาดเดียวกับในบทเรียนก่อน และได้คำนวณคอลัมน์DayOfYear
โดยใช้สูตรต่อไปนี้:
day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)
เมื่อคุณเข้าใจคณิตศาสตร์เบื้องหลังการถดถอยเชิงเส้นแล้ว มาสร้างโมเดลการถดถอยเพื่อดูว่าเราสามารถคาดการณ์ได้หรือไม่ว่าชุดฟักทองใดจะมีราคาที่ดีที่สุดสำหรับฟักทอง ผู้ที่ซื้อฟักทองสำหรับแปลงฟักทองในวันหยุดอาจต้องการข้อมูลนี้เพื่อเพิ่มประสิทธิภาพการซื้อชุดฟักทองสำหรับแปลง
การมองหาความสัมพันธ์
🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอสั้น ๆ เกี่ยวกับความสัมพันธ์
จากบทเรียนก่อน คุณอาจเห็นว่าราคาเฉลี่ยสำหรับแต่ละเดือนมีลักษณะดังนี้:

สิ่งนี้ชี้ให้เห็นว่าควรมีความสัมพันธ์บางอย่าง และเราสามารถลองฝึกโมเดลการถดถอยเชิงเส้นเพื่อคาดการณ์ความสัมพันธ์ระหว่าง Month
และ Price
หรือระหว่าง DayOfYear
และ Price
นี่คือกราฟกระจายที่แสดงความสัมพันธ์หลัง:

มาดูกันว่ามีความสัมพันธ์หรือไม่โดยใช้ฟังก์ชัน corr
:
print(new_pumpkins['Month'].corr(new_pumpkins['Price']))
print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))
ดูเหมือนว่าความสัมพันธ์จะค่อนข้างต่ำ -0.15 โดย Month
และ -0.17 โดย DayOfMonth
แต่ก็อาจมีความสัมพันธ์ที่สำคัญอื่น ๆ ดูเหมือนว่าจะมีคลัสเตอร์ราคาที่แตกต่างกันซึ่งสอดคล้องกับพันธุ์ฟักทองที่แตกต่างกัน เพื่อยืนยันสมมติฐานนี้ ลองพล็อตแต่ละหมวดหมู่ฟักทองโดยใช้สีที่แตกต่างกัน โดยการส่งพารามิเตอร์ ax
ไปยังฟังก์ชัน scatter
เราสามารถพล็อตจุดทั้งหมดในกราฟเดียวกัน:
ax=None
colors = ['red','blue','green','yellow']
for i,var in enumerate(new_pumpkins['Variety'].unique()):
df = new_pumpkins[new_pumpkins['Variety']==var]
ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)

การตรวจสอบของเราชี้ให้เห็นว่าพันธุ์มีผลต่อราคามากกว่าวันที่ขาย เราสามารถเห็นสิ่งนี้ได้จากกราฟแท่ง:
new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')

ให้เรามุ่งเน้นไปที่พันธุ์ฟักทองชนิดเดียวคือ 'pie type' และดูว่าผลของวันที่มีต่อราคาเป็นอย่างไร:
pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']
pie_pumpkins.plot.scatter('DayOfYear','Price')

หากเราคำนวณความสัมพันธ์ระหว่าง Price
และ DayOfYear
โดยใช้ฟังก์ชัน corr
ตอนนี้ เราจะได้ค่าประมาณ -0.27
- ซึ่งหมายความว่าการฝึกโมเดลการคาดการณ์มีเหตุผล
ก่อนการฝึกโมเดลการถดถอยเชิงเส้น สิ่งสำคัญคือต้องแน่ใจว่าข้อมูลของเราสะอาด การถดถอยเชิงเส้นไม่ทำงานได้ดีนักกับค่าที่ขาดหายไป ดังนั้นจึงสมควรที่จะลบเซลล์ว่างทั้งหมด:
pie_pumpkins.dropna(inplace=True)
pie_pumpkins.info()
อีกวิธีหนึ่งคือเติมค่าที่ว่างเปล่าด้วยค่ามeanจากคอลัมน์ที่เกี่ยวข้อง
การถดถอยเชิงเส้นแบบง่าย
🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอสั้น ๆ เกี่ยวกับการถดถอยเชิงเส้นและพหุนาม
ในการฝึกโมเดลการถดถอยเชิงเส้น เราจะใช้ไลบรารี Scikit-learn
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
เริ่มต้นด้วยการแยกค่าข้อมูลอินพุต (features) และผลลัพธ์ที่คาดหวัง (label) ออกเป็นอาเรย์ numpy แยกกัน:
X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)
y = pie_pumpkins['Price']
โปรดทราบว่าเราต้องใช้
reshape
กับข้อมูลอินพุตเพื่อให้แพ็กเกจ Linear Regression เข้าใจได้อย่างถูกต้อง Linear Regression คาดหวังอาเรย์ 2 มิติเป็นอินพุต โดยที่แต่ละแถวของอาเรย์สอดคล้องกับเวกเตอร์ของฟีเจอร์อินพุต ในกรณีของเรา เนื่องจากเรามีอินพุตเพียงหนึ่งตัว - เราต้องการอาเรย์ที่มีรูปร่าง N×1 โดยที่ N คือขนาดของชุดข้อมูล
จากนั้น เราต้องแบ่งข้อมูลออกเป็นชุดข้อมูลการฝึกและการทดสอบ เพื่อให้เราสามารถตรวจสอบความถูกต้องของโมเดลหลังการฝึกได้:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
สุดท้าย การฝึกโมเดลการถดถอยเชิงเส้นจริงใช้เพียงสองบรรทัดโค้ด เรากำหนดออบเจ็กต์ LinearRegression
และปรับให้เข้ากับข้อมูลของเราโดยใช้เมธอด fit
:
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)
ออบเจ็กต์ LinearRegression
หลังจาก fit
จะมีสัมประสิทธิ์ทั้งหมดของการถดถอย ซึ่งสามารถเข้าถึงได้โดยใช้คุณสมบัติ .coef_
ในกรณีของเรา มีเพียงสัมประสิทธิ์เดียว ซึ่งควรอยู่ที่ประมาณ -0.017
ซึ่งหมายความว่าราคาดูเหมือนจะลดลงเล็กน้อยตามเวลา แต่ไม่มากนัก ประมาณ 2 เซนต์ต่อวัน นอกจากนี้เรายังสามารถเข้าถึงจุดตัดแกน Y ของการถดถอยได้โดยใช้ lin_reg.intercept_
- ซึ่งจะอยู่ที่ประมาณ 21
ในกรณีของเรา ซึ่งบ่งชี้ถึงราคาต้นปี
เพื่อดูว่าโมเดลของเรามีความแม่นยำเพียงใด เราสามารถคาดการณ์ราคาบนชุดข้อมูลทดสอบ และวัดว่าการคาดการณ์ของเราใกล้เคียงกับค่าที่คาดหวังเพียงใด สิ่งนี้สามารถทำได้โดยใช้เมตริก Mean Square Error (MSE) ซึ่งเป็นค่าเฉลี่ยของผลต่างกำลังสองทั้งหมดระหว่างค่าที่คาดหวังและค่าที่คาดการณ์
pred = lin_reg.predict(X_test)
mse = np.sqrt(mean_squared_error(y_test,pred))
print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')
ข้อผิดพลาดของเราดูเหมือนจะอยู่ที่ประมาณ 2 จุด ซึ่งคิดเป็น ~17% ไม่ค่อยดีนัก ตัวบ่งชี้อีกตัวหนึ่งของคุณภาพโมเดลคือ ค่าสัมประสิทธิ์การกำหนด ซึ่งสามารถหาได้ดังนี้:
score = lin_reg.score(X_train,y_train)
print('Model determination: ', score)
หากค่ามีค่าเท่ากับ 0 หมายความว่าโมเดลไม่ได้คำนึงถึงข้อมูลนำเข้า และทำหน้าที่เป็น ตัวทำนายเชิงเส้นที่แย่ที่สุด ซึ่งเป็นเพียงค่าเฉลี่ยของผลลัพธ์เท่านั้น ค่าที่เท่ากับ 1 หมายความว่าเราสามารถทำนายผลลัพธ์ที่คาดหวังได้อย่างสมบูรณ์แบบ ในกรณีของเรา ค่าสัมประสิทธิ์อยู่ที่ประมาณ 0.06 ซึ่งค่อนข้างต่ำ
เรายังสามารถสร้างกราฟข้อมูลทดสอบพร้อมกับเส้นการถดถอยเพื่อดูว่าการถดถอยทำงานอย่างไรในกรณีของเรา:
plt.scatter(X_test,y_test)
plt.plot(X_test,pred)

การถดถอยเชิงพหุนาม
อีกประเภทหนึ่งของการถดถอยเชิงเส้นคือการถดถอยเชิงพหุนาม บางครั้งความสัมพันธ์ระหว่างตัวแปรอาจเป็นเชิงเส้น เช่น ยิ่งฟักทองมีปริมาตรมาก ราคาก็ยิ่งสูงขึ้น แต่บางครั้งความสัมพันธ์เหล่านี้ไม่สามารถวาดเป็นระนาบหรือเส้นตรงได้
✅ ตัวอย่างเพิ่มเติม ของข้อมูลที่สามารถใช้การถดถอยเชิงพหุนาม
ลองดูความสัมพันธ์ระหว่างวันที่และราคาอีกครั้ง กราฟกระจายนี้ดูเหมือนควรจะวิเคราะห์ด้วยเส้นตรงหรือไม่? ราคาสามารถผันผวนได้หรือไม่? ในกรณีนี้ คุณสามารถลองใช้การถดถอยเชิงพหุนาม
✅ พหุนามเป็นนิพจน์ทางคณิตศาสตร์ที่อาจประกอบด้วยตัวแปรและสัมประสิทธิ์หนึ่งตัวหรือมากกว่า
การถดถอยเชิงพหุนามสร้างเส้นโค้งเพื่อให้เหมาะสมกับข้อมูลที่ไม่เป็นเชิงเส้นได้ดียิ่งขึ้น ในกรณีของเรา หากเรารวมตัวแปร DayOfYear
กำลังสองเข้าไปในข้อมูลนำเข้า เราควรจะสามารถปรับข้อมูลของเราให้เข้ากับเส้นโค้งพาราโบลา ซึ่งจะมีค่าต่ำสุดในช่วงเวลาหนึ่งของปี
Scikit-learn มี API pipeline ที่มีประโยชน์สำหรับการรวมขั้นตอนต่างๆ ของการประมวลผลข้อมูลเข้าด้วยกัน Pipeline คือชุดของ estimators ในกรณีของเรา เราจะสร้าง pipeline ที่เพิ่มคุณสมบัติพหุนามให้กับโมเดลของเรา และฝึกการถดถอย:
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())
pipeline.fit(X_train,y_train)
การใช้ PolynomialFeatures(2)
หมายความว่าเราจะรวมพหุนามระดับสองทั้งหมดจากข้อมูลนำเข้า ในกรณีของเราจะหมายถึงเพียง DayOfYear
2 แต่หากมีตัวแปรนำเข้าสองตัว X และ Y จะเพิ่ม X2, XY และ Y2 เราอาจใช้พหุนามระดับสูงกว่านี้หากต้องการ
Pipeline สามารถใช้งานได้ในลักษณะเดียวกับวัตถุ LinearRegression
ดั้งเดิม เช่น เราสามารถ fit
pipeline และใช้ predict
เพื่อรับผลการทำนาย นี่คือกราฟที่แสดงข้อมูลทดสอบและเส้นโค้งประมาณค่า:

การใช้การถดถอยเชิงพหุนาม เราสามารถลดค่า MSE และเพิ่มค่าสัมประสิทธิ์การกำหนดได้เล็กน้อย แต่ไม่มากนัก เราจำเป็นต้องพิจารณาคุณสมบัติอื่นๆ ด้วย!
คุณจะเห็นว่าราคาฟักทองต่ำสุดจะอยู่ประมาณวันฮาโลวีน คุณจะอธิบายเรื่องนี้ได้อย่างไร?
🎃 ยินดีด้วย คุณเพิ่งสร้างโมเดลที่สามารถช่วยทำนายราคาฟักทองสำหรับทำพาย คุณอาจทำขั้นตอนเดียวกันนี้ซ้ำสำหรับฟักทองทุกประเภท แต่จะค่อนข้างน่าเบื่อ มาเรียนรู้วิธีนำประเภทฟักทองมาพิจารณาในโมเดลของเรากันเถอะ!
คุณสมบัติประเภทหมวดหมู่
ในโลกอุดมคติ เราต้องการสามารถทำนายราคาสำหรับฟักทองหลากหลายประเภทโดยใช้โมเดลเดียว อย่างไรก็ตาม คอลัมน์ Variety
นั้นแตกต่างจากคอลัมน์อย่าง Month
เพราะมันมีค่าที่ไม่ใช่ตัวเลข คอลัมน์เหล่านี้เรียกว่า หมวดหมู่
🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอสั้นๆ เกี่ยวกับการใช้คุณสมบัติประเภทหมวดหมู่
นี่คือกราฟที่แสดงให้เห็นว่าราคาเฉลี่ยขึ้นอยู่กับประเภทฟักทองอย่างไร:

เพื่อพิจารณาประเภทฟักทอง เราต้องแปลงมันเป็นรูปแบบตัวเลขก่อน หรือ เข้ารหัส มีหลายวิธีที่เราสามารถทำได้:
- การเข้ารหัสตัวเลขแบบง่ายจะสร้างตารางของประเภทฟักทองต่างๆ และแทนที่ชื่อประเภทฟักทองด้วยดัชนีในตารางนั้น วิธีนี้ไม่เหมาะสำหรับการถดถอยเชิงเส้น เพราะการถดถอยเชิงเส้นจะใช้ค่าตัวเลขของดัชนีจริงๆ และเพิ่มเข้าไปในผลลัพธ์โดยการคูณด้วยสัมประสิทธิ์ ในกรณีของเรา ความสัมพันธ์ระหว่างหมายเลขดัชนีและราคานั้นชัดเจนว่าไม่เป็นเชิงเส้น แม้ว่าเราจะจัดลำดับดัชนีในลักษณะเฉพาะก็ตาม
- การเข้ารหัสแบบ one-hot จะเปลี่ยนคอลัมน์
Variety
เป็น 4 คอลัมน์ที่แตกต่างกัน หนึ่งคอลัมน์สำหรับแต่ละประเภทฟักทอง แต่ละคอลัมน์จะมีค่า1
หากแถวที่เกี่ยวข้องเป็นประเภทฟักทองนั้น และ0
หากไม่ใช่ นั่นหมายความว่าจะมีสัมประสิทธิ์สี่ตัวในการถดถอยเชิงเส้น หนึ่งตัวสำหรับแต่ละประเภทฟักทอง ซึ่งรับผิดชอบ "ราคาเริ่มต้น" (หรือ "ราคาที่เพิ่มขึ้น") สำหรับประเภทนั้นๆ
โค้ดด้านล่างแสดงวิธีการเข้ารหัสแบบ one-hot สำหรับประเภทฟักทอง:
pd.get_dummies(new_pumpkins['Variety'])
ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE |
---|---|---|---|---|
70 | 0 | 0 | 0 | 1 |
71 | 0 | 0 | 0 | 1 |
... | ... | ... | ... | ... |
1738 | 0 | 1 | 0 | 0 |
1739 | 0 | 1 | 0 | 0 |
1740 | 0 | 1 | 0 | 0 |
1741 | 0 | 1 | 0 | 0 |
1742 | 0 | 1 | 0 | 0 |
เพื่อฝึกการถดถอยเชิงเส้นโดยใช้ประเภทฟักทองที่เข้ารหัสแบบ one-hot เป็นข้อมูลนำเข้า เราเพียงแค่ต้องกำหนดข้อมูล X
และ y
ให้ถูกต้อง:
X = pd.get_dummies(new_pumpkins['Variety'])
y = new_pumpkins['Price']
โค้ดที่เหลือเหมือนกับที่เราใช้ด้านบนเพื่อฝึกการถดถอยเชิงเส้น หากคุณลอง คุณจะเห็นว่าค่า MSE ใกล้เคียงกัน แต่เราจะได้ค่าสัมประสิทธิ์การกำหนดที่สูงขึ้น (~77%) เพื่อให้การทำนายแม่นยำยิ่งขึ้น เราสามารถนำคุณสมบัติประเภทหมวดหมู่อื่นๆ มาพิจารณา รวมถึงคุณสมบัติตัวเลข เช่น Month
หรือ DayOfYear
เพื่อสร้างชุดข้อมูลคุณสมบัติขนาดใหญ่ เราสามารถใช้ join
:
X = pd.get_dummies(new_pumpkins['Variety']) \
.join(new_pumpkins['Month']) \
.join(pd.get_dummies(new_pumpkins['City'])) \
.join(pd.get_dummies(new_pumpkins['Package']))
y = new_pumpkins['Price']
ที่นี่เรายังพิจารณา City
และประเภท Package
ซึ่งให้ค่า MSE 2.84 (10%) และค่าสัมประสิทธิ์การกำหนด 0.94!
รวมทุกอย่างเข้าด้วยกัน
เพื่อสร้างโมเดลที่ดีที่สุด เราสามารถใช้ข้อมูลที่รวมกัน (ประเภทหมวดหมู่ที่เข้ารหัสแบบ one-hot + ตัวเลข) จากตัวอย่างด้านบนร่วมกับการถดถอยเชิงพหุนาม นี่คือโค้ดทั้งหมดเพื่อความสะดวกของคุณ:
# set up training data
X = pd.get_dummies(new_pumpkins['Variety']) \
.join(new_pumpkins['Month']) \
.join(pd.get_dummies(new_pumpkins['City'])) \
.join(pd.get_dummies(new_pumpkins['Package']))
y = new_pumpkins['Price']
# make train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# setup and train the pipeline
pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())
pipeline.fit(X_train,y_train)
# predict results for test data
pred = pipeline.predict(X_test)
# calculate MSE and determination
mse = np.sqrt(mean_squared_error(y_test,pred))
print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')
score = pipeline.score(X_train,y_train)
print('Model determination: ', score)
สิ่งนี้ควรให้ค่าสัมประสิทธิ์การกำหนดที่ดีที่สุดเกือบ 97% และ MSE=2.23 (~8% ข้อผิดพลาดในการทำนาย)
โมเดล | MSE | ค่าสัมประสิทธิ์การกำหนด |
---|---|---|
DayOfYear Linear |
2.77 (17.2%) | 0.07 |
DayOfYear Polynomial |
2.73 (17.0%) | 0.08 |
Variety Linear |
5.24 (19.7%) | 0.77 |
All features Linear | 2.84 (10.5%) | 0.94 |
All features Polynomial | 2.23 (8.25%) | 0.97 |
🏆 ยอดเยี่ยม! คุณสร้างโมเดลการถดถอย 4 โมเดลในบทเรียนเดียว และปรับปรุงคุณภาพโมเดลได้ถึง 97% ในส่วนสุดท้ายเกี่ยวกับการถดถอย คุณจะได้เรียนรู้เกี่ยวกับการถดถอยโลจิสติกเพื่อกำหนดหมวดหมู่
🚀ความท้าทาย
ทดสอบตัวแปรต่างๆ ในโน้ตบุ๊กนี้เพื่อดูว่าความสัมพันธ์สอดคล้องกับความแม่นยำของโมเดลอย่างไร
แบบทดสอบหลังการบรรยาย
ทบทวนและศึกษาด้วยตนเอง
ในบทเรียนนี้เราได้เรียนรู้เกี่ยวกับการถดถอยเชิงเส้น ยังมีประเภทการถดถอยที่สำคัญอื่นๆ อ่านเกี่ยวกับเทคนิค Stepwise, Ridge, Lasso และ Elasticnet หลักสูตรที่ดีในการศึกษาเพิ่มเติมคือ Stanford Statistical Learning course
งานที่ได้รับมอบหมาย
ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาดั้งเดิมควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ แนะนำให้ใช้บริการแปลภาษาจากผู้เชี่ยวชาญ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้