You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/sw/2-Regression/4-Logistic/notebook.ipynb

269 lines
8.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Aina za Malenge na Rangi\n",
"\n",
"Pakia maktaba zinazohitajika na seti ya data. Badilisha data kuwa dataframe inayojumuisha sehemu ya data:\n",
"\n",
"Hebu tuangalie uhusiano kati ya rangi na aina\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>City Name</th>\n",
" <th>Type</th>\n",
" <th>Package</th>\n",
" <th>Variety</th>\n",
" <th>Sub Variety</th>\n",
" <th>Grade</th>\n",
" <th>Date</th>\n",
" <th>Low Price</th>\n",
" <th>High Price</th>\n",
" <th>Mostly Low</th>\n",
" <th>...</th>\n",
" <th>Unit of Sale</th>\n",
" <th>Quality</th>\n",
" <th>Condition</th>\n",
" <th>Appearance</th>\n",
" <th>Storage</th>\n",
" <th>Crop</th>\n",
" <th>Repack</th>\n",
" <th>Trans Mode</th>\n",
" <th>Unnamed: 24</th>\n",
" <th>Unnamed: 25</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4/29/17</td>\n",
" <td>270.0</td>\n",
" <td>280.0</td>\n",
" <td>270.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>E</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>5/6/17</td>\n",
" <td>270.0</td>\n",
" <td>280.0</td>\n",
" <td>270.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>E</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>9/24/16</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>9/24/16</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11/5/16</td>\n",
" <td>90.0</td>\n",
" <td>100.0</td>\n",
" <td>90.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 26 columns</p>\n",
"</div>"
],
"text/plain": [
" City Name Type Package Variety Sub Variety Grade Date \\\n",
"0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n",
"1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
"2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
"\n",
" Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n",
"0 270.0 280.0 270.0 ... NaN NaN NaN \n",
"1 270.0 280.0 270.0 ... NaN NaN NaN \n",
"2 160.0 160.0 160.0 ... NaN NaN NaN \n",
"3 160.0 160.0 160.0 ... NaN NaN NaN \n",
"4 90.0 100.0 90.0 ... NaN NaN NaN \n",
"\n",
" Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
"0 NaN NaN NaN E NaN NaN NaN \n",
"1 NaN NaN NaN E NaN NaN NaN \n",
"2 NaN NaN NaN N NaN NaN NaN \n",
"3 NaN NaN NaN N NaN NaN NaN \n",
"4 NaN NaN NaN N NaN NaN NaN \n",
"\n",
"[5 rows x 26 columns]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
"\n",
"full_pumpkins.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Kanusho**: \nHati hii imetafsiriwa kwa kutumia huduma ya tafsiri ya AI [Co-op Translator](https://github.com/Azure/co-op-translator). Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokuwa sahihi. Hati ya asili katika lugha yake ya awali inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, inashauriwa kutumia huduma ya tafsiri ya kitaalamu ya binadamu. Hatutawajibika kwa maelewano mabaya au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"metadata": {
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}
},
"orig_nbformat": 2,
"coopTranslator": {
"original_hash": "dee08c2b49057b0de8b6752c4dbca368",
"translation_date": "2025-09-06T13:26:39+00:00",
"source_file": "2-Regression/4-Logistic/notebook.ipynb",
"language_code": "sw"
}
},
"nbformat": 4,
"nbformat_minor": 2
}