You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/sl/2-Regression/4-Logistic/notebook.ipynb

269 lines
8.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sorte buč in barva\n",
"\n",
"Naložite potrebne knjižnice in podatkovni niz. Podatke pretvorite v podatkovni okvir, ki vsebuje podmnožico podatkov:\n",
"\n",
"Poglejmo razmerje med barvo in sorto.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>City Name</th>\n",
" <th>Type</th>\n",
" <th>Package</th>\n",
" <th>Variety</th>\n",
" <th>Sub Variety</th>\n",
" <th>Grade</th>\n",
" <th>Date</th>\n",
" <th>Low Price</th>\n",
" <th>High Price</th>\n",
" <th>Mostly Low</th>\n",
" <th>...</th>\n",
" <th>Unit of Sale</th>\n",
" <th>Quality</th>\n",
" <th>Condition</th>\n",
" <th>Appearance</th>\n",
" <th>Storage</th>\n",
" <th>Crop</th>\n",
" <th>Repack</th>\n",
" <th>Trans Mode</th>\n",
" <th>Unnamed: 24</th>\n",
" <th>Unnamed: 25</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4/29/17</td>\n",
" <td>270.0</td>\n",
" <td>280.0</td>\n",
" <td>270.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>E</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>5/6/17</td>\n",
" <td>270.0</td>\n",
" <td>280.0</td>\n",
" <td>270.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>E</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>9/24/16</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>9/24/16</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11/5/16</td>\n",
" <td>90.0</td>\n",
" <td>100.0</td>\n",
" <td>90.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 26 columns</p>\n",
"</div>"
],
"text/plain": [
" City Name Type Package Variety Sub Variety Grade Date \\\n",
"0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n",
"1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
"2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
"\n",
" Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n",
"0 270.0 280.0 270.0 ... NaN NaN NaN \n",
"1 270.0 280.0 270.0 ... NaN NaN NaN \n",
"2 160.0 160.0 160.0 ... NaN NaN NaN \n",
"3 160.0 160.0 160.0 ... NaN NaN NaN \n",
"4 90.0 100.0 90.0 ... NaN NaN NaN \n",
"\n",
" Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
"0 NaN NaN NaN E NaN NaN NaN \n",
"1 NaN NaN NaN E NaN NaN NaN \n",
"2 NaN NaN NaN N NaN NaN NaN \n",
"3 NaN NaN NaN N NaN NaN NaN \n",
"4 NaN NaN NaN N NaN NaN NaN \n",
"\n",
"[5 rows x 26 columns]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
"\n",
"full_pumpkins.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Omejitev odgovornosti**: \nTa dokument je bil preveden z uporabo storitve za strojno prevajanje [Co-op Translator](https://github.com/Azure/co-op-translator). Čeprav si prizadevamo za natančnost, vas prosimo, da se zavedate, da lahko avtomatizirani prevodi vsebujejo napake ali netočnosti. Izvirni dokument v njegovem izvirnem jeziku je treba obravnavati kot avtoritativni vir. Za ključne informacije priporočamo strokovno človeško prevajanje. Ne prevzemamo odgovornosti za morebitna nesporazumevanja ali napačne razlage, ki izhajajo iz uporabe tega prevoda.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"metadata": {
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}
},
"orig_nbformat": 2,
"coopTranslator": {
"original_hash": "dee08c2b49057b0de8b6752c4dbca368",
"translation_date": "2025-09-06T13:26:26+00:00",
"source_file": "2-Regression/4-Logistic/notebook.ipynb",
"language_code": "sl"
}
},
"nbformat": 4,
"nbformat_minor": 2
}