You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/pt/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb

1298 lines
78 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"nbformat": 4,
"nbformat_minor": 2,
"metadata": {
"colab": {
"name": "lesson_11-R.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "ir",
"display_name": "R"
},
"language_info": {
"name": "R"
},
"coopTranslator": {
"original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2",
"translation_date": "2025-09-03T20:23:38+00:00",
"source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb",
"language_code": "pt"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# Construir um modelo de classificação: Deliciosas Cozinhas Asiáticas e Indianas\n"
],
"metadata": {
"id": "zs2woWv_HoE8"
}
},
{
"cell_type": "markdown",
"source": [
"## Classificadores de culinária 1\n",
"\n",
"Nesta lição, vamos explorar uma variedade de classificadores para *prever uma culinária nacional específica com base em um grupo de ingredientes.* Enquanto fazemos isso, aprenderemos mais sobre algumas das formas como os algoritmos podem ser utilizados em tarefas de classificação.\n",
"\n",
"### [**Questionário pré-aula**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n",
"\n",
"### **Preparação**\n",
"\n",
"Esta lição é uma continuação da nossa [lição anterior](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb), onde:\n",
"\n",
"- Fizemos uma introdução leve às classificações usando um conjunto de dados sobre todas as brilhantes culinárias da Ásia e da Índia 😋.\n",
"\n",
"- Explorámos alguns [verbos do dplyr](https://dplyr.tidyverse.org/) para preparar e limpar os nossos dados.\n",
"\n",
"- Criámos visualizações bonitas usando ggplot2.\n",
"\n",
"- Demonstrámos como lidar com dados desequilibrados ao pré-processá-los usando [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html).\n",
"\n",
"- Mostrámos como `prep` e `bake` a nossa receita para confirmar que funcionará como esperado.\n",
"\n",
"#### **Pré-requisitos**\n",
"\n",
"Para esta lição, precisaremos dos seguintes pacotes para limpar, preparar e visualizar os nossos dados:\n",
"\n",
"- `tidyverse`: O [tidyverse](https://www.tidyverse.org/) é uma [coleção de pacotes R](https://www.tidyverse.org/packages) projetada para tornar a ciência de dados mais rápida, fácil e divertida!\n",
"\n",
"- `tidymodels`: O [tidymodels](https://www.tidymodels.org/) é uma [framework de pacotes](https://www.tidymodels.org/packages/) para modelagem e aprendizagem automática.\n",
"\n",
"- `themis`: O [pacote themis](https://themis.tidymodels.org/) fornece passos adicionais de receitas para lidar com dados desequilibrados.\n",
"\n",
"- `nnet`: O [pacote nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf) fornece funções para estimar redes neurais feed-forward com uma única camada oculta e para modelos de regressão logística multinomial.\n",
"\n",
"Pode instalá-los da seguinte forma:\n"
],
"metadata": {
"id": "iDFOb3ebHwQC"
}
},
{
"cell_type": "markdown",
"source": [
"`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n",
"\n",
"Alternativamente, o script abaixo verifica se tem os pacotes necessários para completar este módulo e instala-os caso estejam em falta.\n"
],
"metadata": {
"id": "4V85BGCjII7F"
}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n",
"\r\n",
"pacman::p_load(tidyverse, tidymodels, themis, here)"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Loading required package: pacman\n",
"\n"
]
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "an5NPyyKIKNR",
"outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8"
}
},
{
"cell_type": "markdown",
"source": [
"## 1. Dividir os dados em conjuntos de treino e teste.\n",
"\n",
"Vamos começar por selecionar alguns passos da nossa lição anterior.\n",
"\n",
"### Eliminar os ingredientes mais comuns que geram confusão entre diferentes cozinhas, utilizando `dplyr::select()`.\n",
"\n",
"Toda a gente adora arroz, alho e gengibre!\n"
],
"metadata": {
"id": "0ax9GQLBINVv"
}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"# Load the original cuisines data\r\n",
"df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n",
"\r\n",
"# Drop id column, rice, garlic and ginger from our original data set\r\n",
"df_select <- df %>% \r\n",
" select(-c(1, rice, garlic, ginger)) %>%\r\n",
" # Encode cuisine column as categorical\r\n",
" mutate(cuisine = factor(cuisine))\r\n",
"\r\n",
"# Display new data set\r\n",
"df_select %>% \r\n",
" slice_head(n = 5)\r\n",
"\r\n",
"# Display distribution of cuisines\r\n",
"df_select %>% \r\n",
" count(cuisine) %>% \r\n",
" arrange(desc(n))"
],
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"New names:\n",
"* `` -> ...1\n",
"\n",
"\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n",
"\n",
"\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n",
"\u001b[1mDelimiter:\u001b[22m \",\"\n",
"\u001b[31mchr\u001b[39m (1): cuisine\n",
"\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n",
"\n",
"\n",
"\u001b[36m\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n",
"\u001b[36m\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n",
"\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
"1 indian 0 0 0 0 0 0 0 0 \n",
"2 indian 1 0 0 0 0 0 0 0 \n",
"3 indian 0 0 0 0 0 0 0 0 \n",
"4 indian 0 0 0 0 0 0 0 0 \n",
"5 indian 0 0 0 0 0 0 0 0 \n",
" artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
"1 0 ⋯ 0 0 0 0 0 0 \n",
"2 0 ⋯ 0 0 0 0 0 0 \n",
"3 0 ⋯ 0 0 0 0 0 0 \n",
"4 0 ⋯ 0 0 0 0 0 0 \n",
"5 0 ⋯ 0 0 0 0 0 0 \n",
" yam yeast yogurt zucchini\n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"5 0 0 1 0 "
],
"text/markdown": [
"\n",
"A tibble: 5 × 381\n",
"\n",
"| cuisine &lt;fct&gt; | almond &lt;dbl&gt; | angelica &lt;dbl&gt; | anise &lt;dbl&gt; | anise_seed &lt;dbl&gt; | apple &lt;dbl&gt; | apple_brandy &lt;dbl&gt; | apricot &lt;dbl&gt; | armagnac &lt;dbl&gt; | artemisia &lt;dbl&gt; | ⋯ ⋯ | whiskey &lt;dbl&gt; | white_bread &lt;dbl&gt; | white_wine &lt;dbl&gt; | whole_grain_wheat_flour &lt;dbl&gt; | wine &lt;dbl&gt; | wood &lt;dbl&gt; | yam &lt;dbl&gt; | yeast &lt;dbl&gt; | yogurt &lt;dbl&gt; | zucchini &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 381\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
" cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
" <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & ⋯ & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 381</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>almond</th><th scope=col>angelica</th><th scope=col>anise</th><th scope=col>anise_seed</th><th scope=col>apple</th><th scope=col>apple_brandy</th><th scope=col>apricot</th><th scope=col>armagnac</th><th scope=col>artemisia</th><th scope=col>⋯</th><th scope=col>whiskey</th><th scope=col>white_bread</th><th scope=col>white_wine</th><th scope=col>whole_grain_wheat_flour</th><th scope=col>wine</th><th scope=col>wood</th><th scope=col>yam</th><th scope=col>yeast</th><th scope=col>yogurt</th><th scope=col>zucchini</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>⋯</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>indian</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine n \n",
"1 korean 799\n",
"2 indian 598\n",
"3 chinese 442\n",
"4 japanese 320\n",
"5 thai 289"
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | n &lt;int&gt; |\n",
"|---|---|\n",
"| korean | 799 |\n",
"| indian | 598 |\n",
"| chinese | 442 |\n",
"| japanese | 320 |\n",
"| thai | 289 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & n\\\\\n",
" <fct> & <int>\\\\\n",
"\\hline\n",
"\t korean & 799\\\\\n",
"\t indian & 598\\\\\n",
"\t chinese & 442\\\\\n",
"\t japanese & 320\\\\\n",
"\t thai & 289\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>n</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>korean </td><td>799</td></tr>\n",
"\t<tr><td>indian </td><td>598</td></tr>\n",
"\t<tr><td>chinese </td><td>442</td></tr>\n",
"\t<tr><td>japanese</td><td>320</td></tr>\n",
"\t<tr><td>thai </td><td>289</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 735
},
"id": "jhCrrH22IWVR",
"outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c"
}
},
{
"cell_type": "markdown",
"source": [
"Perfeito! Agora, é hora de dividir os dados de forma que 70% dos dados sejam destinados ao treino e 30% aos testes. Também aplicaremos uma técnica de `estratificação` ao dividir os dados para `manter a proporção de cada tipo de cozinha` nos conjuntos de treino e validação.\n",
"\n",
"[rsample](https://rsample.tidymodels.org/), um pacote do Tidymodels, fornece infraestrutura para divisão e reamostragem eficiente de dados:\n"
],
"metadata": {
"id": "AYTjVyajIdny"
}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"# Load the core Tidymodels packages into R session\r\n",
"library(tidymodels)\r\n",
"\r\n",
"# Create split specification\r\n",
"set.seed(2056)\r\n",
"cuisines_split <- initial_split(data = df_select,\r\n",
" strata = cuisine,\r\n",
" prop = 0.7)\r\n",
"\r\n",
"# Extract the data in each split\r\n",
"cuisines_train <- training(cuisines_split)\r\n",
"cuisines_test <- testing(cuisines_split)\r\n",
"\r\n",
"# Print the number of cases in each split\r\n",
"cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n",
" \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n",
"\r\n",
"# Display the first few rows of the training set\r\n",
"cuisines_train %>% \r\n",
" slice_head(n = 5)\r\n",
"\r\n",
"\r\n",
"# Display distribution of cuisines in the training set\r\n",
"cuisines_train %>% \r\n",
" count(cuisine) %>% \r\n",
" arrange(desc(n))"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Training cases: 1712\n",
"Test cases: 736"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n",
"1 chinese 0 0 0 0 0 0 0 0 \n",
"2 chinese 0 0 0 0 0 0 0 0 \n",
"3 chinese 0 0 0 0 0 0 0 0 \n",
"4 chinese 0 0 0 0 0 0 0 0 \n",
"5 chinese 0 0 0 0 0 0 0 0 \n",
" artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n",
"1 0 ⋯ 0 0 0 0 1 0 \n",
"2 0 ⋯ 0 0 0 0 1 0 \n",
"3 0 ⋯ 0 0 0 0 0 0 \n",
"4 0 ⋯ 0 0 0 0 0 0 \n",
"5 0 ⋯ 0 0 0 0 0 0 \n",
" yam yeast yogurt zucchini\n",
"1 0 0 0 0 \n",
"2 0 0 0 0 \n",
"3 0 0 0 0 \n",
"4 0 0 0 0 \n",
"5 0 0 0 0 "
],
"text/markdown": [
"\n",
"A tibble: 5 × 381\n",
"\n",
"| cuisine &lt;fct&gt; | almond &lt;dbl&gt; | angelica &lt;dbl&gt; | anise &lt;dbl&gt; | anise_seed &lt;dbl&gt; | apple &lt;dbl&gt; | apple_brandy &lt;dbl&gt; | apricot &lt;dbl&gt; | armagnac &lt;dbl&gt; | artemisia &lt;dbl&gt; | ⋯ ⋯ | whiskey &lt;dbl&gt; | white_bread &lt;dbl&gt; | white_wine &lt;dbl&gt; | whole_grain_wheat_flour &lt;dbl&gt; | wine &lt;dbl&gt; | wood &lt;dbl&gt; | yam &lt;dbl&gt; | yeast &lt;dbl&gt; | yogurt &lt;dbl&gt; | zucchini &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 381\n",
"\\begin{tabular}{lllllllllllllllllllll}\n",
" cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n",
" <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & ⋯ & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 381</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>almond</th><th scope=col>angelica</th><th scope=col>anise</th><th scope=col>anise_seed</th><th scope=col>apple</th><th scope=col>apple_brandy</th><th scope=col>apricot</th><th scope=col>armagnac</th><th scope=col>artemisia</th><th scope=col>⋯</th><th scope=col>whiskey</th><th scope=col>white_bread</th><th scope=col>white_wine</th><th scope=col>whole_grain_wheat_flour</th><th scope=col>wine</th><th scope=col>wood</th><th scope=col>yam</th><th scope=col>yeast</th><th scope=col>yogurt</th><th scope=col>zucchini</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>⋯</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"\t<tr><td>chinese</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>⋯</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine n \n",
"1 korean 559\n",
"2 indian 418\n",
"3 chinese 309\n",
"4 japanese 224\n",
"5 thai 202"
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | n &lt;int&gt; |\n",
"|---|---|\n",
"| korean | 559 |\n",
"| indian | 418 |\n",
"| chinese | 309 |\n",
"| japanese | 224 |\n",
"| thai | 202 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & n\\\\\n",
" <fct> & <int>\\\\\n",
"\\hline\n",
"\t korean & 559\\\\\n",
"\t indian & 418\\\\\n",
"\t chinese & 309\\\\\n",
"\t japanese & 224\\\\\n",
"\t thai & 202\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>n</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;int&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>korean </td><td>559</td></tr>\n",
"\t<tr><td>indian </td><td>418</td></tr>\n",
"\t<tr><td>chinese </td><td>309</td></tr>\n",
"\t<tr><td>japanese</td><td>224</td></tr>\n",
"\t<tr><td>thai </td><td>202</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 535
},
"id": "w5FWIkEiIjdN",
"outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df"
}
},
{
"cell_type": "markdown",
"source": [
"## 2. Lidar com dados desequilibrados\n",
"\n",
"Como deve ter reparado no conjunto de dados original, assim como no nosso conjunto de treino, há uma distribuição bastante desigual no número de tipos de cozinha. As cozinhas coreanas são *quase* 3 vezes mais numerosas do que as cozinhas tailandesas. Dados desequilibrados frequentemente têm efeitos negativos no desempenho do modelo. Muitos modelos funcionam melhor quando o número de observações é igual e, por isso, tendem a ter dificuldades com dados desequilibrados.\n",
"\n",
"Existem principalmente duas formas de lidar com conjuntos de dados desequilibrados:\n",
"\n",
"- adicionar observações à classe minoritária: `Over-sampling`, por exemplo, utilizando um algoritmo SMOTE que gera sinteticamente novos exemplos da classe minoritária com base nos vizinhos mais próximos desses casos.\n",
"\n",
"- remover observações da classe majoritária: `Under-sampling`\n",
"\n",
"Na nossa lição anterior, demonstrámos como lidar com conjuntos de dados desequilibrados utilizando uma `recipe`. Uma recipe pode ser vista como um plano que descreve os passos que devem ser aplicados a um conjunto de dados para prepará-lo para análise. No nosso caso, queremos ter uma distribuição igual no número de tipos de cozinha no nosso `conjunto de treino`. Vamos começar!\n"
],
"metadata": {
"id": "daBi9qJNIwqW"
}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"# Load themis package for dealing with imbalanced data\r\n",
"library(themis)\r\n",
"\r\n",
"# Create a recipe for preprocessing training data\r\n",
"cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n",
" step_smote(cuisine)\r\n",
"\r\n",
"# Print recipe\r\n",
"cuisines_recipe"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Data Recipe\n",
"\n",
"Inputs:\n",
"\n",
" role #variables\n",
" outcome 1\n",
" predictor 380\n",
"\n",
"Operations:\n",
"\n",
"SMOTE based on cuisine"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 200
},
"id": "Az6LFBGxI1X0",
"outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6"
}
},
{
"cell_type": "markdown",
"source": [
"Pode, claro, confirmar (usando prep+bake) que a receita funcionará como esperado - todas as etiquetas de cozinha têm `559` observações.\n",
"\n",
"Como vamos usar esta receita como um pré-processador para modelagem, um `workflow()` fará todo o trabalho de preparação e execução para nós, então não será necessário estimar manualmente a receita.\n",
"\n",
"Agora estamos prontos para treinar um modelo 👩‍💻👨‍💻!\n",
"\n",
"## 3. Escolher o seu classificador\n",
"\n",
"<p >\n",
" <img src=\"../../images/parsnip.jpg\"\n",
" width=\"600\"/>\n",
" <figcaption>Arte por @allison_horst</figcaption>\n"
],
"metadata": {
"id": "NBL3PqIWJBBB"
}
},
{
"cell_type": "markdown",
"source": [
"Agora temos de decidir qual algoritmo usar para o trabalho 🤔.\n",
"\n",
"No Tidymodels, o [`parsnip package`](https://parsnip.tidymodels.org/index.html) fornece uma interface consistente para trabalhar com modelos em diferentes motores (pacotes). Consulte a documentação do parsnip para explorar [tipos de modelos e motores](https://www.tidymodels.org/find/parsnip/#models) e os seus correspondentes [argumentos de modelo](https://www.tidymodels.org/find/parsnip/#model-args). A variedade pode ser bastante confusa à primeira vista. Por exemplo, os seguintes métodos incluem técnicas de classificação:\n",
"\n",
"- Modelos de Classificação Baseados em Regras C5.0\n",
"\n",
"- Modelos de Discriminação Flexível\n",
"\n",
"- Modelos de Discriminação Linear\n",
"\n",
"- Modelos de Discriminação Regularizada\n",
"\n",
"- Modelos de Regressão Logística\n",
"\n",
"- Modelos de Regressão Multinomial\n",
"\n",
"- Modelos de Bayes Ingénuo\n",
"\n",
"- Máquinas de Vetores de Suporte\n",
"\n",
"- Vizinhos Mais Próximos\n",
"\n",
"- Árvores de Decisão\n",
"\n",
"- Métodos de Ensemble\n",
"\n",
"- Redes Neuronais\n",
"\n",
"E a lista continua!\n",
"\n",
"### **Qual classificador escolher?**\n",
"\n",
"Então, qual classificador deve escolher? Muitas vezes, testar vários e procurar um bom resultado é uma forma de experimentar.\n",
"\n",
"> O AutoML resolve este problema de forma prática ao realizar estas comparações na nuvem, permitindo-lhe escolher o melhor algoritmo para os seus dados. Experimente [aqui](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n",
"\n",
"Além disso, a escolha do classificador depende do nosso problema. Por exemplo, quando o resultado pode ser categorizado em `mais de duas classes`, como no nosso caso, deve usar um `algoritmo de classificação multiclasses` em vez de `classificação binária.`\n",
"\n",
"### **Uma abordagem melhor**\n",
"\n",
"Uma abordagem melhor do que adivinhar aleatoriamente, no entanto, é seguir as ideias deste [Guia de Referência de ML](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) disponível para download. Aqui, descobrimos que, para o nosso problema de multiclasses, temos algumas opções:\n",
"\n",
"<p >\n",
" <img src=\"../../images/cheatsheet.png\"\n",
" width=\"500\"/>\n",
" <figcaption>Uma secção do Guia de Referência de Algoritmos da Microsoft, detalhando opções de classificação multiclasses</figcaption>\n"
],
"metadata": {
"id": "a6DLAZ3vJZ14"
}
},
{
"cell_type": "markdown",
"source": [
"### **Raciocínio**\n",
"\n",
"Vamos analisar diferentes abordagens dadas as restrições que temos:\n",
"\n",
"- **Redes Neurais Profundas são demasiado pesadas**. Dado o nosso conjunto de dados limpo, mas minimalista, e o facto de estarmos a executar o treino localmente através de notebooks, redes neurais profundas são demasiado pesadas para esta tarefa.\n",
"\n",
"- **Sem classificador de duas classes**. Não utilizamos um classificador de duas classes, o que elimina a abordagem um-contra-todos.\n",
"\n",
"- **Árvore de decisão ou regressão logística podem funcionar**. Uma árvore de decisão pode funcionar, ou regressão multinomial/regressão logística multiclasses para dados multiclasses.\n",
"\n",
"- **Árvores de decisão multiclasses impulsionadas resolvem outro problema**. A árvore de decisão multiclasses impulsionada é mais adequada para tarefas não paramétricas, por exemplo, tarefas destinadas a construir rankings, por isso não é útil para nós.\n",
"\n",
"Além disso, normalmente antes de embarcar em modelos de aprendizagem automática mais complexos, como métodos de ensemble, é uma boa ideia construir o modelo mais simples possível para ter uma ideia do que está a acontecer. Assim, para esta lição, começaremos com um modelo de `regressão multinomial`.\n",
"\n",
"> A regressão logística é uma técnica utilizada quando a variável de resultado é categórica (ou nominal). Na regressão logística binária, o número de variáveis de resultado é dois, enquanto na regressão logística multinomial o número de variáveis de resultado é superior a dois. Consulte [Advanced Regression Methods](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html) para leitura adicional.\n",
"\n",
"## 4. Treinar e avaliar um modelo de regressão logística multinomial.\n",
"\n",
"No Tidymodels, `parsnip::multinom_reg()`, define um modelo que utiliza preditores lineares para prever dados multiclasses usando a distribuição multinomial. Consulte `?multinom_reg()` para conhecer as diferentes formas/motores que pode usar para ajustar este modelo.\n",
"\n",
"Neste exemplo, ajustaremos um modelo de regressão multinomial através do motor padrão [nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf).\n",
"\n",
"> Escolhi um valor para `penalty` de forma um pouco aleatória. Existem formas melhores de escolher este valor, nomeadamente utilizando `resampling` e ajustando o modelo, algo que discutiremos mais tarde.\n",
">\n",
"> Consulte [Tidymodels: Get Started](https://www.tidymodels.org/start/tuning/) caso queira aprender mais sobre como ajustar os hiperparâmetros do modelo.\n"
],
"metadata": {
"id": "gWMsVcbBJemu"
}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"# Create a multinomial regression model specification\r\n",
"mr_spec <- multinom_reg(penalty = 1) %>% \r\n",
" set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n",
" set_mode(\"classification\")\r\n",
"\r\n",
"# Print model specification\r\n",
"mr_spec"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Multinomial Regression Model Specification (classification)\n",
"\n",
"Main Arguments:\n",
" penalty = 1\n",
"\n",
"Engine-Specific Arguments:\n",
" MaxNWts = 2086\n",
"\n",
"Computational engine: nnet \n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 166
},
"id": "Wq_fcyQiJvfG",
"outputId": "c30449c7-3864-4be7-f810-72a003743e2d"
}
},
{
"cell_type": "markdown",
"source": [
"Bom trabalho 🥳! Agora que temos uma receita e uma especificação de modelo, precisamos encontrar uma forma de agrupá-los num objeto que primeiro pré-processará os dados, depois ajustará o modelo nos dados pré-processados e também permitirá atividades de pós-processamento, caso necessário. No Tidymodels, este objeto prático é chamado de [`workflow`](https://workflows.tidymodels.org/) e organiza convenientemente os seus componentes de modelação! Isto é o que chamaríamos de *pipelines* em *Python*.\n",
"\n",
"Então, vamos agrupar tudo num workflow!📦\n"
],
"metadata": {
"id": "NlSbzDfgJ0zh"
}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"# Bundle recipe and model specification\r\n",
"mr_wf <- workflow() %>% \r\n",
" add_recipe(cuisines_recipe) %>% \r\n",
" add_model(mr_spec)\r\n",
"\r\n",
"# Print out workflow\r\n",
"mr_wf"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"══ Workflow ════════════════════════════════════════════════════════════════════\n",
"\u001b[3mPreprocessor:\u001b[23m Recipe\n",
"\u001b[3mModel:\u001b[23m multinom_reg()\n",
"\n",
"── Preprocessor ────────────────────────────────────────────────────────────────\n",
"1 Recipe Step\n",
"\n",
"• step_smote()\n",
"\n",
"── Model ───────────────────────────────────────────────────────────────────────\n",
"Multinomial Regression Model Specification (classification)\n",
"\n",
"Main Arguments:\n",
" penalty = 1\n",
"\n",
"Engine-Specific Arguments:\n",
" MaxNWts = 2086\n",
"\n",
"Computational engine: nnet \n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 333
},
"id": "Sc1TfPA4Ke3_",
"outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c"
}
},
{
"cell_type": "markdown",
"source": [
"Workflows 👌👌! Um **`workflow()`** pode ser ajustado de forma muito semelhante a um modelo. Então, é hora de treinar um modelo!\n"
],
"metadata": {
"id": "TNQ8i85aKf9L"
}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"# Train a multinomial regression model\n",
"mr_fit <- fit(object = mr_wf, data = cuisines_train)\n",
"\n",
"mr_fit"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"══ Workflow [trained] ══════════════════════════════════════════════════════════\n",
"\u001b[3mPreprocessor:\u001b[23m Recipe\n",
"\u001b[3mModel:\u001b[23m multinom_reg()\n",
"\n",
"── Preprocessor ────────────────────────────────────────────────────────────────\n",
"1 Recipe Step\n",
"\n",
"• step_smote()\n",
"\n",
"── Model ───────────────────────────────────────────────────────────────────────\n",
"Call:\n",
"nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n",
" trace = FALSE)\n",
"\n",
"Coefficients:\n",
" (Intercept) almond angelica anise anise_seed apple\n",
"indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n",
"japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n",
"korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n",
"thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n",
" apple_brandy apricot armagnac artemisia artichoke asparagus\n",
"indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n",
"japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n",
"korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n",
"thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n",
" avocado bacon baked_potato balm banana barley\n",
"indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n",
"japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n",
"korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n",
"thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n",
" bartlett_pear basil bay bean beech\n",
"indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n",
"japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n",
"korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n",
"thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n",
" beef beef_broth beef_liver beer beet\n",
"indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n",
"japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n",
"korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n",
"thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n",
" bell_pepper bergamot berry bitter_orange black_bean\n",
"indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n",
"japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n",
"korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n",
"thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n",
" black_currant black_mustard_seed_oil black_pepper black_raspberry\n",
"indian 0 0.38935801 -0.4453495 0\n",
"japanese 0 -0.05452887 -0.5440869 0\n",
"korean 0 -0.03929970 0.8025454 0\n",
"thai 0 -0.21498372 -0.9854806 0\n",
" black_sesame_seed black_tea blackberry blackberry_brandy\n",
"indian -0.2759246 0.3079977 0.191256164 0\n",
"japanese -0.6101687 -0.1671913 -0.118915977 0\n",
"korean 1.5197674 -0.3036261 -0.007729435 0\n",
"thai -0.1755656 -0.1487033 -0.002983296 0\n",
" blue_cheese blueberry bone_oil bourbon_whiskey brandy\n",
"indian 0 0.216164294 -0.2276744 0 0.22427587\n",
"japanese 0 -0.119186087 0.3913019 0 -0.15595599\n",
"korean 0 -0.007821986 0.2854487 0 -0.02562342\n",
"thai 0 -0.004947048 -0.0253658 0 -0.05715244\n",
"\n",
"...\n",
"and 308 more lines."
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "GMbdfVmTKkJI",
"outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e"
}
},
{
"cell_type": "markdown",
"source": [
"Os resultados mostram os coeficientes que o modelo aprendeu durante o treino.\n",
"\n",
"### Avaliar o Modelo Treinado\n",
"\n",
"É hora de verificar como o modelo se saiu 📏 avaliando-o num conjunto de teste! Vamos começar por fazer previsões no conjunto de teste.\n"
],
"metadata": {
"id": "tt2BfOxrKmcJ"
}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"# Make predictions on the test set\n",
"results <- cuisines_test %>% select(cuisine) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n",
"\n",
"# Print out results\n",
"results %>% \n",
" slice_head(n = 5)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine .pred_class\n",
"1 indian thai \n",
"2 indian indian \n",
"3 indian indian \n",
"4 indian indian \n",
"5 indian indian "
],
"text/markdown": [
"\n",
"A tibble: 5 × 2\n",
"\n",
"| cuisine &lt;fct&gt; | .pred_class &lt;fct&gt; |\n",
"|---|---|\n",
"| indian | thai |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"| indian | indian |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 2\n",
"\\begin{tabular}{ll}\n",
" cuisine & .pred\\_class\\\\\n",
" <fct> & <fct>\\\\\n",
"\\hline\n",
"\t indian & thai \\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\t indian & indian\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 2</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>.pred_class</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;fct&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>thai </td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 248
},
"id": "CqtckvtsKqax",
"outputId": "e57fe557-6a68-4217-fe82-173328c5436d"
}
},
{
"cell_type": "markdown",
"source": [
"Bom trabalho! No Tidymodels, avaliar o desempenho do modelo pode ser feito usando [yardstick](https://yardstick.tidymodels.org/) - um pacote utilizado para medir a eficácia dos modelos através de métricas de desempenho. Como fizemos na nossa aula de regressão logística, vamos começar por calcular uma matriz de confusão.\n"
],
"metadata": {
"id": "8w5N6XsBKss7"
}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"# Confusion matrix for categorical data\n",
"conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" Truth\n",
"Prediction chinese indian japanese korean thai\n",
" chinese 83 1 8 15 10\n",
" indian 4 163 1 2 6\n",
" japanese 21 5 73 25 1\n",
" korean 15 0 11 191 0\n",
" thai 10 11 3 7 70"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 133
},
"id": "YvODvsLkK0iG",
"outputId": "bb69da84-1266-47ad-b174-d43b88ca2988"
}
},
{
"cell_type": "markdown",
"source": [
"Ao lidar com várias classes, é geralmente mais intuitivo visualizar isto como um mapa de calor, assim:\n"
],
"metadata": {
"id": "c0HfPL16Lr6U"
}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
"update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n",
"# Visualize confusion matrix\n",
"results %>% \n",
" conf_mat(cuisine, .pred_class) %>% \n",
" autoplot(type = \"heatmap\")"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"plot without title"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg=="
},
"metadata": {
"image/png": {
"width": 420,
"height": 420
}
}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 436
},
"id": "HsAtwukyLsvt",
"outputId": "3032a224-a2c8-4270-b4f2-7bb620317400"
}
},
{
"cell_type": "markdown",
"source": [
"Os quadrados mais escuros no gráfico da matriz de confusão indicam um número elevado de casos, e espera-se que consiga ver uma linha diagonal de quadrados mais escuros, indicando os casos em que o rótulo previsto e o rótulo real são iguais.\n",
"\n",
"Vamos agora calcular as estatísticas resumidas para a matriz de confusão.\n"
],
"metadata": {
"id": "oOJC87dkLwPr"
}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"# Summary stats for confusion matrix\n",
"conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n",
"summary()"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" .metric .estimator .estimate\n",
"1 accuracy multiclass 0.7880435\n",
"2 kap multiclass 0.7276583\n",
"3 sens macro 0.7780927\n",
"4 spec macro 0.9477598\n",
"5 ppv macro 0.7585583\n",
"6 npv macro 0.9460080\n",
"7 mcc multiclass 0.7292724\n",
"8 j_index macro 0.7258524\n",
"9 bal_accuracy macro 0.8629262\n",
"10 detection_prevalence macro 0.2000000\n",
"11 precision macro 0.7585583\n",
"12 recall macro 0.7780927\n",
"13 f_meas macro 0.7641862"
],
"text/markdown": [
"\n",
"A tibble: 13 × 3\n",
"\n",
"| .metric &lt;chr&gt; | .estimator &lt;chr&gt; | .estimate &lt;dbl&gt; |\n",
"|---|---|---|\n",
"| accuracy | multiclass | 0.7880435 |\n",
"| kap | multiclass | 0.7276583 |\n",
"| sens | macro | 0.7780927 |\n",
"| spec | macro | 0.9477598 |\n",
"| ppv | macro | 0.7585583 |\n",
"| npv | macro | 0.9460080 |\n",
"| mcc | multiclass | 0.7292724 |\n",
"| j_index | macro | 0.7258524 |\n",
"| bal_accuracy | macro | 0.8629262 |\n",
"| detection_prevalence | macro | 0.2000000 |\n",
"| precision | macro | 0.7585583 |\n",
"| recall | macro | 0.7780927 |\n",
"| f_meas | macro | 0.7641862 |\n",
"\n"
],
"text/latex": [
"A tibble: 13 × 3\n",
"\\begin{tabular}{lll}\n",
" .metric & .estimator & .estimate\\\\\n",
" <chr> & <chr> & <dbl>\\\\\n",
"\\hline\n",
"\t accuracy & multiclass & 0.7880435\\\\\n",
"\t kap & multiclass & 0.7276583\\\\\n",
"\t sens & macro & 0.7780927\\\\\n",
"\t spec & macro & 0.9477598\\\\\n",
"\t ppv & macro & 0.7585583\\\\\n",
"\t npv & macro & 0.9460080\\\\\n",
"\t mcc & multiclass & 0.7292724\\\\\n",
"\t j\\_index & macro & 0.7258524\\\\\n",
"\t bal\\_accuracy & macro & 0.8629262\\\\\n",
"\t detection\\_prevalence & macro & 0.2000000\\\\\n",
"\t precision & macro & 0.7585583\\\\\n",
"\t recall & macro & 0.7780927\\\\\n",
"\t f\\_meas & macro & 0.7641862\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 13 × 3</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>.metric</th><th scope=col>.estimator</th><th scope=col>.estimate</th></tr>\n",
"\t<tr><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;chr&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>accuracy </td><td>multiclass</td><td>0.7880435</td></tr>\n",
"\t<tr><td>kap </td><td>multiclass</td><td>0.7276583</td></tr>\n",
"\t<tr><td>sens </td><td>macro </td><td>0.7780927</td></tr>\n",
"\t<tr><td>spec </td><td>macro </td><td>0.9477598</td></tr>\n",
"\t<tr><td>ppv </td><td>macro </td><td>0.7585583</td></tr>\n",
"\t<tr><td>npv </td><td>macro </td><td>0.9460080</td></tr>\n",
"\t<tr><td>mcc </td><td>multiclass</td><td>0.7292724</td></tr>\n",
"\t<tr><td>j_index </td><td>macro </td><td>0.7258524</td></tr>\n",
"\t<tr><td>bal_accuracy </td><td>macro </td><td>0.8629262</td></tr>\n",
"\t<tr><td>detection_prevalence</td><td>macro </td><td>0.2000000</td></tr>\n",
"\t<tr><td>precision </td><td>macro </td><td>0.7585583</td></tr>\n",
"\t<tr><td>recall </td><td>macro </td><td>0.7780927</td></tr>\n",
"\t<tr><td>f_meas </td><td>macro </td><td>0.7641862</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 494
},
"id": "OYqetUyzL5Wz",
"outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6"
}
},
{
"cell_type": "markdown",
"source": [
"Se nos concentrarmos em algumas métricas como precisão, sensibilidade, ppv, não estamos mal para começar 🥳!\n",
"\n",
"## 4. Aprofundando\n",
"\n",
"Vamos fazer uma pergunta subtil: Que critérios são usados para decidir por um determinado tipo de cozinha como o resultado previsto?\n",
"\n",
"Bem, os algoritmos de aprendizagem automática estatística, como a regressão logística, baseiam-se em `probabilidade`; portanto, o que é realmente previsto por um classificador é uma distribuição de probabilidade sobre um conjunto de resultados possíveis. A classe com a maior probabilidade é então escolhida como o resultado mais provável para as observações dadas.\n",
"\n",
"Vamos ver isto em ação, fazendo tanto previsões de classes rígidas como probabilidades.\n"
],
"metadata": {
"id": "43t7vz8vMJtW"
}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"# Make hard class prediction and probabilities\n",
"results_prob <- cuisines_test %>%\n",
" select(cuisine) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n",
" bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n",
"\n",
"# Print out results\n",
"results_prob %>% \n",
" slice_head(n = 5)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
" cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n",
"1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n",
"2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n",
"3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n",
"4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n",
"5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n",
" .pred_thai \n",
"1 5.388194e-01\n",
"2 1.577948e-06\n",
"3 6.874989e-03\n",
"4 3.863391e-03\n",
"5 5.653283e-03"
],
"text/markdown": [
"\n",
"A tibble: 5 × 7\n",
"\n",
"| cuisine &lt;fct&gt; | .pred_class &lt;fct&gt; | .pred_chinese &lt;dbl&gt; | .pred_indian &lt;dbl&gt; | .pred_japanese &lt;dbl&gt; | .pred_korean &lt;dbl&gt; | .pred_thai &lt;dbl&gt; |\n",
"|---|---|---|---|---|---|---|\n",
"| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n",
"| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n",
"| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n",
"| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n",
"| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n",
"\n"
],
"text/latex": [
"A tibble: 5 × 7\n",
"\\begin{tabular}{lllllll}\n",
" cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n",
" <fct> & <fct> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n",
"\\hline\n",
"\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n",
"\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n",
"\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n",
"\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n",
"\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n",
"\\end{tabular}\n"
],
"text/html": [
"<table class=\"dataframe\">\n",
"<caption>A tibble: 5 × 7</caption>\n",
"<thead>\n",
"\t<tr><th scope=col>cuisine</th><th scope=col>.pred_class</th><th scope=col>.pred_chinese</th><th scope=col>.pred_indian</th><th scope=col>.pred_japanese</th><th scope=col>.pred_korean</th><th scope=col>.pred_thai</th></tr>\n",
"\t<tr><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;fct&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th><th scope=col>&lt;dbl&gt;</th></tr>\n",
"</thead>\n",
"<tbody>\n",
"\t<tr><td>indian</td><td>thai </td><td>1.551259e-03</td><td>0.4587877</td><td>5.988039e-04</td><td>2.428503e-04</td><td>5.388194e-01</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>2.637133e-05</td><td>0.9999488</td><td>6.648651e-07</td><td>2.259993e-05</td><td>1.577948e-06</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>1.049433e-03</td><td>0.9909982</td><td>1.060937e-03</td><td>1.644947e-05</td><td>6.874989e-03</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>6.237482e-02</td><td>0.4763035</td><td>9.136702e-02</td><td>3.660913e-01</td><td>3.863391e-03</td></tr>\n",
"\t<tr><td>indian</td><td>indian</td><td>1.431745e-02</td><td>0.9418551</td><td>2.945239e-02</td><td>8.721782e-03</td><td>5.653283e-03</td></tr>\n",
"</tbody>\n",
"</table>\n"
]
},
"metadata": {}
}
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 248
},
"id": "xdKNs-ZPMTJL",
"outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008"
}
},
{
"cell_type": "markdown",
"source": [
"✅ Consegues explicar porque é que o modelo tem tanta certeza de que a primeira observação é tailandesa?\n",
"\n",
"## **🚀Desafio**\n",
"\n",
"Nesta lição, utilizaste os teus dados limpos para construir um modelo de machine learning capaz de prever uma cozinha nacional com base numa série de ingredientes. Dedica algum tempo a explorar as [muitas opções](https://www.tidymodels.org/find/parsnip/#models) que o Tidymodels oferece para classificar dados e [outras formas](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) de ajustar regressões multinomiais.\n",
"\n",
"#### AGRADECIMENTOS A:\n",
"\n",
"[`Allison Horst`](https://twitter.com/allison_horst/) por criar as ilustrações incríveis que tornam o R mais acolhedor e envolvente. Encontra mais ilustrações na sua [galeria](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM).\n",
"\n",
"[Cassie Breviu](https://www.twitter.com/cassieview) e [Jen Looper](https://www.twitter.com/jenlooper) por criarem a versão original deste módulo em Python ♥️\n",
"\n",
"<br>\n",
"Teria incluído algumas piadas, mas não percebo trocadilhos sobre comida 😅.\n",
"\n",
"<br>\n",
"\n",
"Boas aprendizagens,\n",
"\n",
"[Eric](https://twitter.com/ericntay), Embaixador Estudante Gold da Microsoft Learn.\n"
],
"metadata": {
"id": "2tWVHMeLMYdM"
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Aviso Legal**: \nEste documento foi traduzido utilizando o serviço de tradução por IA [Co-op Translator](https://github.com/Azure/co-op-translator). Embora nos esforcemos para garantir a precisão, esteja ciente de que traduções automáticas podem conter erros ou imprecisões. O documento original no seu idioma nativo deve ser considerado a fonte oficial. Para informações críticas, recomenda-se uma tradução profissional realizada por humanos. Não nos responsabilizamos por quaisquer mal-entendidos ou interpretações incorretas resultantes do uso desta tradução.\n"
]
}
]
}