You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/mo/7-TimeSeries/2-ARIMA/working/notebook.ipynb

59 lines
2.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": 3
},
"orig_nbformat": 2,
"coopTranslator": {
"original_hash": "523ec472196307b3c4235337353c9ceb",
"translation_date": "2025-08-29T23:20:18+00:00",
"source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb",
"language_code": "mo"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"source": [
"# 使用 ARIMA 進行時間序列預測\n",
"\n",
"在此筆記本中,我們將展示如何:\n",
"- 準備時間序列數據以訓練 ARIMA 時間序列預測模型\n",
"- 實現一個簡單的 ARIMA 模型,預測時間序列中未來 HORIZON 步(從時間 *t+1* 到 *t+HORIZON*\n",
"- 評估模型\n",
"\n",
"此範例中的數據來自 GEFCom2014 預測競賽。它包含了 2012 年至 2014 年之間 3 年的每小時電力負載和溫度數據。任務是預測未來的電力負載值。在此範例中,我們展示如何僅使用歷史負載數據來預測下一個時間步。\n",
"\n",
"陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli 和 Rob J. Hyndman\"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\"《International Journal of Forecasting》第 32 卷,第 3 期,頁 896-9132016 年 7 月至 9 月。\n"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pip install statsmodels"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**免責聲明** \n本文件已使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。雖然我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於關鍵信息,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。\n"
]
}
]
}