You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/lt/2-Regression/3-Linear/notebook.ipynb

128 lines
4.1 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Moliūgų kainodara\n",
"\n",
"Įkelkite reikalingas bibliotekas ir duomenų rinkinį. Konvertuokite duomenis į duomenų rėmelį, kuriame būtų tik dalis duomenų:\n",
"\n",
"- Pasirinkite tik tuos moliūgus, kurių kaina nurodyta už statinę\n",
"- Konvertuokite datą į mėnesį\n",
"- Apskaičiuokite kainą kaip aukštos ir žemos kainų vidurkį\n",
"- Konvertuokite kainą, kad ji atspindėtų kainodarą pagal statinės kiekį\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from datetime import datetime\n",
"\n",
"pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
"\n",
"pumpkins.head()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n",
"\n",
"columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n",
"pumpkins = pumpkins.loc[:, columns_to_select]\n",
"\n",
"price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n",
"\n",
"month = pd.DatetimeIndex(pumpkins['Date']).month\n",
"day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n",
"\n",
"new_pumpkins = pd.DataFrame(\n",
" {'Month': month, \n",
" 'DayOfYear' : day_of_year, \n",
" 'Variety': pumpkins['Variety'], \n",
" 'City': pumpkins['City Name'], \n",
" 'Package': pumpkins['Package'], \n",
" 'Low Price': pumpkins['Low Price'],\n",
" 'High Price': pumpkins['High Price'], \n",
" 'Price': price})\n",
"\n",
"new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n",
"new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n",
"\n",
"new_pumpkins.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Paprastas sklaidos diagrama primena, kad turime tik mėnesių duomenis nuo rugpjūčio iki gruodžio. Tikriausiai mums reikia daugiau duomenų, kad galėtume daryti išvadas linijiniu būdu.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.scatter('Month','Price',data=new_pumpkins)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"plt.scatter('DayOfYear','Price',data=new_pumpkins)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Atsakomybės apribojimas**: \nŠis dokumentas buvo išverstas naudojant dirbtinio intelekto vertimo paslaugą [Co-op Translator](https://github.com/Azure/co-op-translator). Nors siekiame tikslumo, atkreipiame dėmesį, kad automatiniai vertimai gali turėti klaidų ar netikslumų. Originalus dokumentas jo gimtąja kalba turėtų būti laikomas autoritetingu šaltiniu. Dėl svarbios informacijos rekomenduojama naudotis profesionalių vertėjų paslaugomis. Mes neprisiimame atsakomybės už nesusipratimus ar klaidingus aiškinimus, kylančius dėl šio vertimo naudojimo.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3-final"
},
"orig_nbformat": 2,
"coopTranslator": {
"original_hash": "b032d371c75279373507f003439a577e",
"translation_date": "2025-09-03T19:16:04+00:00",
"source_file": "2-Regression/3-Linear/notebook.ipynb",
"language_code": "lt"
}
},
"nbformat": 4,
"nbformat_minor": 2
}