You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/id/2-Regression/4-Logistic/notebook.ipynb

269 lines
8.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Varietas dan Warna Labu\n",
"\n",
"Muat pustaka dan dataset yang diperlukan. Ubah data menjadi dataframe yang berisi subset data:\n",
"\n",
"Mari kita lihat hubungan antara warna dan varietas\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>City Name</th>\n",
" <th>Type</th>\n",
" <th>Package</th>\n",
" <th>Variety</th>\n",
" <th>Sub Variety</th>\n",
" <th>Grade</th>\n",
" <th>Date</th>\n",
" <th>Low Price</th>\n",
" <th>High Price</th>\n",
" <th>Mostly Low</th>\n",
" <th>...</th>\n",
" <th>Unit of Sale</th>\n",
" <th>Quality</th>\n",
" <th>Condition</th>\n",
" <th>Appearance</th>\n",
" <th>Storage</th>\n",
" <th>Crop</th>\n",
" <th>Repack</th>\n",
" <th>Trans Mode</th>\n",
" <th>Unnamed: 24</th>\n",
" <th>Unnamed: 25</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4/29/17</td>\n",
" <td>270.0</td>\n",
" <td>280.0</td>\n",
" <td>270.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>E</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>5/6/17</td>\n",
" <td>270.0</td>\n",
" <td>280.0</td>\n",
" <td>270.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>E</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>9/24/16</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>9/24/16</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>160.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>BALTIMORE</td>\n",
" <td>NaN</td>\n",
" <td>24 inch bins</td>\n",
" <td>HOWDEN TYPE</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11/5/16</td>\n",
" <td>90.0</td>\n",
" <td>100.0</td>\n",
" <td>90.0</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>N</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 26 columns</p>\n",
"</div>"
],
"text/plain": [
" City Name Type Package Variety Sub Variety Grade Date \\\n",
"0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n",
"1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
"2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
"\n",
" Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n",
"0 270.0 280.0 270.0 ... NaN NaN NaN \n",
"1 270.0 280.0 270.0 ... NaN NaN NaN \n",
"2 160.0 160.0 160.0 ... NaN NaN NaN \n",
"3 160.0 160.0 160.0 ... NaN NaN NaN \n",
"4 90.0 100.0 90.0 ... NaN NaN NaN \n",
"\n",
" Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
"0 NaN NaN NaN E NaN NaN NaN \n",
"1 NaN NaN NaN E NaN NaN NaN \n",
"2 NaN NaN NaN N NaN NaN NaN \n",
"3 NaN NaN NaN N NaN NaN NaN \n",
"4 NaN NaN NaN N NaN NaN NaN \n",
"\n",
"[5 rows x 26 columns]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
"\n",
"full_pumpkins.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Penafian**: \nDokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan hasil yang akurat, harap diketahui bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"metadata": {
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}
},
"orig_nbformat": 2,
"coopTranslator": {
"original_hash": "dee08c2b49057b0de8b6752c4dbca368",
"translation_date": "2025-09-04T06:42:51+00:00",
"source_file": "2-Regression/4-Logistic/notebook.ipynb",
"language_code": "id"
}
},
"nbformat": 4,
"nbformat_minor": 2
}