You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/hi/2-Regression/3-Linear/notebook.ipynb

128 lines
5.4 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## कद्दू की कीमतें\n",
"\n",
"आवश्यक लाइब्रेरी और डेटा सेट लोड करें। डेटा को एक डेटा फ्रेम में बदलें जिसमें डेटा का एक उपसमूह हो:\n",
"\n",
"- केवल उन कद्दुओं को प्राप्त करें जिनकी कीमत बुशल के आधार पर दी गई है\n",
"- तारीख को महीने में बदलें\n",
"- कीमत को उच्च और निम्न कीमतों के औसत के रूप में गणना करें\n",
"- कीमत को बुशल मात्रा के अनुसार दर्शाने के लिए बदलें\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from datetime import datetime\n",
"\n",
"pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n",
"\n",
"pumpkins.head()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n",
"\n",
"columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n",
"pumpkins = pumpkins.loc[:, columns_to_select]\n",
"\n",
"price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n",
"\n",
"month = pd.DatetimeIndex(pumpkins['Date']).month\n",
"day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n",
"\n",
"new_pumpkins = pd.DataFrame(\n",
" {'Month': month, \n",
" 'DayOfYear' : day_of_year, \n",
" 'Variety': pumpkins['Variety'], \n",
" 'City': pumpkins['City Name'], \n",
" 'Package': pumpkins['Package'], \n",
" 'Low Price': pumpkins['Low Price'],\n",
" 'High Price': pumpkins['High Price'], \n",
" 'Price': price})\n",
"\n",
"new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n",
"new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n",
"\n",
"new_pumpkins.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"एक बुनियादी स्कैटरप्लॉट हमें याद दिलाता है कि हमारे पास केवल अगस्त से दिसंबर तक का मासिक डेटा है। हमें संभवतः और अधिक डेटा की आवश्यकता होगी ताकि हम रैखिक रूप से निष्कर्ष निकाल सकें।\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.scatter('Month','Price',data=new_pumpkins)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"plt.scatter('DayOfYear','Price',data=new_pumpkins)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। \n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3-final"
},
"orig_nbformat": 2,
"coopTranslator": {
"original_hash": "b032d371c75279373507f003439a577e",
"translation_date": "2025-09-04T01:02:15+00:00",
"source_file": "2-Regression/3-Linear/notebook.ipynb",
"language_code": "hi"
}
},
"nbformat": 4,
"nbformat_minor": 2
}