You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.1 KiB
100 lines
3.1 KiB
{
|
|
"metadata": {
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": 3
|
|
},
|
|
"orig_nbformat": 4,
|
|
"coopTranslator": {
|
|
"original_hash": "27de2abc0235ebd22080fc8f1107454d",
|
|
"translation_date": "2025-09-04T03:09:36+00:00",
|
|
"source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb",
|
|
"language_code": "fr"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2,
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from textblob import TextBlob\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# You should download the book text, clean it, and import it here\n",
|
|
"with open(\"pride.txt\", encoding=\"utf8\") as f:\n",
|
|
" file_contents = f.read()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"book_pride = TextBlob(file_contents)\n",
|
|
"positive_sentiment_sentences = []\n",
|
|
"negative_sentiment_sentences = []"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for sentence in book_pride.sentences:\n",
|
|
" if sentence.sentiment.polarity == 1:\n",
|
|
" positive_sentiment_sentences.append(sentence)\n",
|
|
" if sentence.sentiment.polarity == -1:\n",
|
|
" negative_sentiment_sentences.append(sentence)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n",
|
|
"for sentence in positive_sentiment_sentences:\n",
|
|
" print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n",
|
|
"for sentence in negative_sentiment_sentences:\n",
|
|
" print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Avertissement** : \nCe document a été traduit à l'aide du service de traduction automatique [Co-op Translator](https://github.com/Azure/co-op-translator). Bien que nous nous efforcions d'assurer l'exactitude, veuillez noter que les traductions automatisées peuvent contenir des erreurs ou des inexactitudes. Le document original dans sa langue d'origine doit être considéré comme la source faisant autorité. Pour des informations critiques, il est recommandé de recourir à une traduction professionnelle réalisée par un humain. Nous déclinons toute responsabilité en cas de malentendus ou d'interprétations erronées résultant de l'utilisation de cette traduction.\n"
|
|
]
|
|
}
|
|
]
|
|
} |