You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/es/7-TimeSeries/3-SVR/working/notebook.ipynb

699 lines
16 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "fv9OoQsMFk5A"
},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"En este cuaderno, demostramos cómo:\n",
"\n",
"- preparar datos de series temporales 2D para entrenar un modelo de regresión SVM\n",
"- implementar SVR utilizando el kernel RBF\n",
"- evaluar el modelo utilizando gráficos y MAPE\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Importando módulos\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('../../')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "M687KNlQFp0-"
},
"outputs": [],
"source": [
"import os\n",
"import warnings\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import datetime as dt\n",
"import math\n",
"\n",
"from sklearn.svm import SVR\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from common.utils import load_data, mape"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cj-kfVdMGjWP"
},
"source": [
"## Preparando datos\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8fywSjC6GsRz"
},
"source": [
"### Cargar datos\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "aBDkEB11Fumg",
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>load</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2012-01-01 00:00:00</th>\n",
" <td>2698.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 01:00:00</th>\n",
" <td>2558.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 02:00:00</th>\n",
" <td>2444.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 03:00:00</th>\n",
" <td>2402.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 04:00:00</th>\n",
" <td>2403.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" load\n",
"2012-01-01 00:00:00 2698.0\n",
"2012-01-01 01:00:00 2558.0\n",
"2012-01-01 02:00:00 2444.0\n",
"2012-01-01 03:00:00 2402.0\n",
"2012-01-01 04:00:00 2403.0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"energy = load_data('../../data')[['load']]\n",
"energy.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0BWP13rGnh4"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 486
},
"id": "hGaNPKu_Gidk",
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
},
"outputs": [],
"source": [
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IPuNor4eGwYY"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ysvsNyONGt0Q"
},
"outputs": [],
"source": [
"train_start_dt = '2014-11-01 00:00:00'\n",
"test_start_dt = '2014-12-30 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 548
},
"id": "SsfdLoPyGy9w",
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
},
"outputs": [],
"source": [
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XbFTqBw6G1Ch"
},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ahora, necesitas preparar los datos para el entrenamiento realizando el filtrado y la escalación de tus datos.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cYivRdQpHDj3",
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
},
"outputs": [],
"source": [
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
"\n",
"print('Training data shape: ', train.shape)\n",
"print('Test data shape: ', test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Escala los datos para que estén en el rango (0, 1).\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "3DNntGQnZX8G",
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
},
"outputs": [],
"source": [
"scaler = MinMaxScaler()\n",
"train['load'] = scaler.fit_transform(train)\n",
"train.head(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "26Yht-rzZexe",
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
},
"outputs": [],
"source": [
"test['load'] = scaler.transform(test)\n",
"test.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x0n6jqxOQ41Z"
},
"source": [
"### Creando datos con pasos de tiempo\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fdmxTZtOQ8xs"
},
"source": [
"Para nuestro SVR, transformamos los datos de entrada para que tengan la forma `[batch, timesteps]`. Por lo tanto, reorganizamos los `train_data` y `test_data` existentes de manera que haya una nueva dimensión que se refiera a los timesteps. Para nuestro ejemplo, tomamos `timesteps = 5`. Así, las entradas al modelo son los datos de los primeros 4 timesteps, y la salida será los datos del 5 timestep.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Rpju-Sc2HFm0"
},
"outputs": [],
"source": [
"# Converting to numpy arrays\n",
"\n",
"train_data = train.values\n",
"test_data = test.values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Selecting the timesteps\n",
"\n",
"timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "O-JrsrsVJhUQ",
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
},
"outputs": [],
"source": [
"# Converting data to 2D tensor\n",
"\n",
"train_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "exJD8AI7KE4g",
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
},
"outputs": [],
"source": [
"# Converting test data to 2D tensor\n",
"\n",
"test_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2u0R2sIsLuq5"
},
"outputs": [],
"source": [
"x_train, y_train = None\n",
"x_test, y_test = None\n",
"\n",
"print(x_train.shape, y_train.shape)\n",
"print(x_test.shape, y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8wIPOtAGLZlh"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EhA403BEPEiD"
},
"outputs": [],
"source": [
"# Create model using RBF kernel\n",
"\n",
"model = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GS0UA3csMbqp",
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
},
"outputs": [],
"source": [
"# Fit model on training data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rz_x8S3UrlcF"
},
"source": [
"### Hacer predicción del modelo\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XR0gnt3MnuYS",
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
},
"outputs": [],
"source": [
"# Making predictions\n",
"\n",
"y_train_pred = None\n",
"y_test_pred = None"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_2epncg-SGzr"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scaling the predictions\n",
"\n",
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
"y_test_pred = scaler.inverse_transform(y_test_pred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xmm_YLXhq7gV",
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
},
"outputs": [],
"source": [
"# Scaling the original values\n",
"\n",
"y_train = scaler.inverse_transform(y_train)\n",
"y_test = scaler.inverse_transform(y_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "u3LBj93coHEi",
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
},
"outputs": [],
"source": [
"# Extract the timesteps for x-axis\n",
"\n",
"train_timestamps = None\n",
"test_timestamps = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(25,6))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.title(\"Training data prediction\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LnhzcnYtXHCm",
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
},
"outputs": [],
"source": [
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 225
},
"id": "53Q02FoqQH4V",
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
},
"outputs": [],
"source": [
"plt.figure(figsize=(10,3))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "clOAUH-SXCJG",
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
},
"outputs": [],
"source": [
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DHlKvVCId5ue"
},
"source": [
"## Predicción del conjunto de datos completo\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cOFJ45vreO0N",
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
},
"outputs": [],
"source": [
"# Extracting load values as numpy array\n",
"data = None\n",
"\n",
"# Scaling\n",
"data = None\n",
"\n",
"# Transforming to 2D tensor as per model input requirement\n",
"data_timesteps=None\n",
"\n",
"# Selecting inputs and outputs from data\n",
"X, Y = None, None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ESSAdQgwexIi"
},
"outputs": [],
"source": [
"# Make model predictions\n",
"\n",
"# Inverse scale and reshape\n",
"Y_pred = None\n",
"Y = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 328
},
"id": "M_qhihN0RVVX",
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
},
"outputs": [],
"source": [
"plt.figure(figsize=(30,8))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AcN7pMYXVGTK",
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
},
"outputs": [],
"source": [
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Recurrent_Neural_Networks.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"coopTranslator": {
"original_hash": "e86ce102239a14c44585623b9b924a74",
"translation_date": "2025-09-04T01:56:25+00:00",
"source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb",
"language_code": "es"
}
},
"nbformat": 4,
"nbformat_minor": 1
}