You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/el/7-TimeSeries/3-SVR/working/notebook.ipynb

703 lines
17 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "fv9OoQsMFk5A"
},
"source": [
"# Πρόβλεψη χρονοσειρών χρησιμοποιώντας Υποστηρικτή Διανυσματικό Παλινδρομητή\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Σε αυτό το σημειωματάριο, δείχνουμε πώς να:\n",
"\n",
"- προετοιμάσουμε δεδομένα χρονοσειρών 2D για την εκπαίδευση ενός μοντέλου SVM παλινδρόμησης\n",
"- υλοποιήσουμε SVR χρησιμοποιώντας τον πυρήνα RBF\n",
"- αξιολογήσουμε το μοντέλο χρησιμοποιώντας γραφήματα και MAPE\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Εισαγωγή μονάδων\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('../../')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "M687KNlQFp0-"
},
"outputs": [],
"source": [
"import os\n",
"import warnings\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import datetime as dt\n",
"import math\n",
"\n",
"from sklearn.svm import SVR\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from common.utils import load_data, mape"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cj-kfVdMGjWP"
},
"source": [
"## Προετοιμασία δεδομένων\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8fywSjC6GsRz"
},
"source": [
"### Φόρτωση δεδομένων\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "aBDkEB11Fumg",
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>load</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2012-01-01 00:00:00</th>\n",
" <td>2698.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 01:00:00</th>\n",
" <td>2558.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 02:00:00</th>\n",
" <td>2444.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 03:00:00</th>\n",
" <td>2402.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 04:00:00</th>\n",
" <td>2403.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" load\n",
"2012-01-01 00:00:00 2698.0\n",
"2012-01-01 01:00:00 2558.0\n",
"2012-01-01 02:00:00 2444.0\n",
"2012-01-01 03:00:00 2402.0\n",
"2012-01-01 04:00:00 2403.0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"energy = load_data('../../data')[['load']]\n",
"energy.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0BWP13rGnh4"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 486
},
"id": "hGaNPKu_Gidk",
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
},
"outputs": [],
"source": [
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IPuNor4eGwYY"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ysvsNyONGt0Q"
},
"outputs": [],
"source": [
"train_start_dt = '2014-11-01 00:00:00'\n",
"test_start_dt = '2014-12-30 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 548
},
"id": "SsfdLoPyGy9w",
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
},
"outputs": [],
"source": [
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XbFTqBw6G1Ch"
},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Τώρα, πρέπει να προετοιμάσετε τα δεδομένα για εκπαίδευση πραγματοποιώντας φιλτράρισμα και κλιμάκωση των δεδομένων σας.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cYivRdQpHDj3",
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
},
"outputs": [],
"source": [
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
"\n",
"print('Training data shape: ', train.shape)\n",
"print('Test data shape: ', test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Κλιμακώστε τα δεδομένα ώστε να βρίσκονται στο εύρος (0, 1).\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "3DNntGQnZX8G",
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
},
"outputs": [],
"source": [
"scaler = MinMaxScaler()\n",
"train['load'] = scaler.fit_transform(train)\n",
"train.head(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "26Yht-rzZexe",
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
},
"outputs": [],
"source": [
"test['load'] = scaler.transform(test)\n",
"test.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x0n6jqxOQ41Z"
},
"source": [
"### Δημιουργία δεδομένων με χρονικά βήματα\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fdmxTZtOQ8xs"
},
"source": [
"Για το SVR μας, μετασχηματίζουμε τα δεδομένα εισόδου ώστε να έχουν τη μορφή `[batch, timesteps]`. Έτσι, αναδιαμορφώνουμε τα υπάρχοντα `train_data` και `test_data` ώστε να υπάρχει μια νέα διάσταση που αναφέρεται στα timesteps. Στο παράδειγμά μας, παίρνουμε `timesteps = 5`. Έτσι, οι είσοδοι στο μοντέλο είναι τα δεδομένα για τα πρώτα 4 timesteps, και η έξοδος θα είναι τα δεδομένα για το 5ο timestep.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Rpju-Sc2HFm0"
},
"outputs": [],
"source": [
"# Converting to numpy arrays\n",
"\n",
"train_data = train.values\n",
"test_data = test.values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Selecting the timesteps\n",
"\n",
"timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "O-JrsrsVJhUQ",
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
},
"outputs": [],
"source": [
"# Converting data to 2D tensor\n",
"\n",
"train_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "exJD8AI7KE4g",
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
},
"outputs": [],
"source": [
"# Converting test data to 2D tensor\n",
"\n",
"test_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2u0R2sIsLuq5"
},
"outputs": [],
"source": [
"x_train, y_train = None\n",
"x_test, y_test = None\n",
"\n",
"print(x_train.shape, y_train.shape)\n",
"print(x_test.shape, y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8wIPOtAGLZlh"
},
"source": [
"## Δημιουργία μοντέλου SVR\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EhA403BEPEiD"
},
"outputs": [],
"source": [
"# Create model using RBF kernel\n",
"\n",
"model = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GS0UA3csMbqp",
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
},
"outputs": [],
"source": [
"# Fit model on training data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rz_x8S3UrlcF"
},
"source": [
"### Κάντε πρόβλεψη μοντέλου\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XR0gnt3MnuYS",
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
},
"outputs": [],
"source": [
"# Making predictions\n",
"\n",
"y_train_pred = None\n",
"y_test_pred = None"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_2epncg-SGzr"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scaling the predictions\n",
"\n",
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
"y_test_pred = scaler.inverse_transform(y_test_pred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xmm_YLXhq7gV",
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
},
"outputs": [],
"source": [
"# Scaling the original values\n",
"\n",
"y_train = scaler.inverse_transform(y_train)\n",
"y_test = scaler.inverse_transform(y_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "u3LBj93coHEi",
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
},
"outputs": [],
"source": [
"# Extract the timesteps for x-axis\n",
"\n",
"train_timestamps = None\n",
"test_timestamps = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(25,6))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.title(\"Training data prediction\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LnhzcnYtXHCm",
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
},
"outputs": [],
"source": [
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 225
},
"id": "53Q02FoqQH4V",
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
},
"outputs": [],
"source": [
"plt.figure(figsize=(10,3))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "clOAUH-SXCJG",
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
},
"outputs": [],
"source": [
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DHlKvVCId5ue"
},
"source": [
"## Πρόβλεψη πλήρους συνόλου δεδομένων\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cOFJ45vreO0N",
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
},
"outputs": [],
"source": [
"# Extracting load values as numpy array\n",
"data = None\n",
"\n",
"# Scaling\n",
"data = None\n",
"\n",
"# Transforming to 2D tensor as per model input requirement\n",
"data_timesteps=None\n",
"\n",
"# Selecting inputs and outputs from data\n",
"X, Y = None, None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ESSAdQgwexIi"
},
"outputs": [],
"source": [
"# Make model predictions\n",
"\n",
"# Inverse scale and reshape\n",
"Y_pred = None\n",
"Y = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 328
},
"id": "M_qhihN0RVVX",
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
},
"outputs": [],
"source": [
"plt.figure(figsize=(30,8))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AcN7pMYXVGTK",
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
},
"outputs": [],
"source": [
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Αποποίηση Ευθύνης**: \nΑυτό το έγγραφο έχει μεταφραστεί χρησιμοποιώντας την υπηρεσία αυτόματης μετάφρασης [Co-op Translator](https://github.com/Azure/co-op-translator). Παρόλο που καταβάλλουμε προσπάθειες για ακρίβεια, παρακαλούμε να έχετε υπόψη ότι οι αυτόματες μεταφράσεις ενδέχεται να περιέχουν λάθη ή ανακρίβειες. Το πρωτότυπο έγγραφο στη μητρική του γλώσσα θα πρέπει να θεωρείται η αυθεντική πηγή. Για κρίσιμες πληροφορίες, συνιστάται επαγγελματική ανθρώπινη μετάφραση. Δεν φέρουμε ευθύνη για τυχόν παρεξηγήσεις ή εσφαλμένες ερμηνείες που προκύπτουν από τη χρήση αυτής της μετάφρασης.\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Recurrent_Neural_Networks.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"coopTranslator": {
"original_hash": "e86ce102239a14c44585623b9b924a74",
"translation_date": "2025-09-04T07:39:43+00:00",
"source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb",
"language_code": "el"
}
},
"nbformat": 4,
"nbformat_minor": 1
}