You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/bn/7-TimeSeries/3-SVR/working/notebook.ipynb

705 lines
18 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "fv9OoQsMFk5A"
},
"source": [
"# সাপোর্ট ভেক্টর রিগ্রেসর ব্যবহার করে টাইম সিরিজ পূর্বাভাস\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"এই নোটবুকে, আমরা দেখাবো কীভাবে:\n",
"\n",
"- ২ডি টাইম সিরিজ ডেটা প্রস্তুত করতে হয় একটি SVM রিগ্রেসর মডেলের প্রশিক্ষণের জন্য \n",
"- RBF কার্নেল ব্যবহার করে SVR বাস্তবায়ন করা \n",
"- প্লট এবং MAPE ব্যবহার করে মডেল মূল্যায়ন করা \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## মডিউল আমদানি\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('../../')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "M687KNlQFp0-"
},
"outputs": [],
"source": [
"import os\n",
"import warnings\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import datetime as dt\n",
"import math\n",
"\n",
"from sklearn.svm import SVR\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from common.utils import load_data, mape"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cj-kfVdMGjWP"
},
"source": [
"## ডেটা প্রস্তুত করা\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8fywSjC6GsRz"
},
"source": [
"### ডেটা লোড করুন\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "aBDkEB11Fumg",
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>load</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2012-01-01 00:00:00</th>\n",
" <td>2698.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 01:00:00</th>\n",
" <td>2558.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 02:00:00</th>\n",
" <td>2444.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 03:00:00</th>\n",
" <td>2402.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 04:00:00</th>\n",
" <td>2403.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" load\n",
"2012-01-01 00:00:00 2698.0\n",
"2012-01-01 01:00:00 2558.0\n",
"2012-01-01 02:00:00 2444.0\n",
"2012-01-01 03:00:00 2402.0\n",
"2012-01-01 04:00:00 2403.0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"energy = load_data('../../data')[['load']]\n",
"energy.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0BWP13rGnh4"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 486
},
"id": "hGaNPKu_Gidk",
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
},
"outputs": [],
"source": [
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IPuNor4eGwYY"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ysvsNyONGt0Q"
},
"outputs": [],
"source": [
"train_start_dt = '2014-11-01 00:00:00'\n",
"test_start_dt = '2014-12-30 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 548
},
"id": "SsfdLoPyGy9w",
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
},
"outputs": [],
"source": [
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XbFTqBw6G1Ch"
},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"এখন, আপনাকে আপনার ডেটা প্রশিক্ষণের জন্য প্রস্তুত করতে ফিল্টারিং এবং স্কেলিং সম্পাদন করতে হবে।\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cYivRdQpHDj3",
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
},
"outputs": [],
"source": [
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
"\n",
"print('Training data shape: ', train.shape)\n",
"print('Test data shape: ', test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"ডেটাকে (0, 1) পরিসরে স্কেল করুন।\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "3DNntGQnZX8G",
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
},
"outputs": [],
"source": [
"scaler = MinMaxScaler()\n",
"train['load'] = scaler.fit_transform(train)\n",
"train.head(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "26Yht-rzZexe",
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
},
"outputs": [],
"source": [
"test['load'] = scaler.transform(test)\n",
"test.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x0n6jqxOQ41Z"
},
"source": [
"### সময়-ধাপ সহ ডেটা তৈরি করা\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fdmxTZtOQ8xs"
},
"source": [
"আমাদের SVR-এর জন্য, আমরা ইনপুট ডেটাকে `[batch, timesteps]` আকারে রূপান্তর করি। তাই, আমরা বিদ্যমান `train_data` এবং `test_data`-কে পুনরায় আকার দিই যাতে একটি নতুন dimension থাকে যা timesteps নির্দেশ করে। আমাদের উদাহরণের জন্য, আমরা `timesteps = 5` গ্রহণ করি। সুতরাং, মডেলের ইনপুট হবে প্রথম ৪টি timestep-এর ডেটা, এবং আউটপুট হবে ৫ম timestep-এর ডেটা।\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Rpju-Sc2HFm0"
},
"outputs": [],
"source": [
"# Converting to numpy arrays\n",
"\n",
"train_data = train.values\n",
"test_data = test.values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Selecting the timesteps\n",
"\n",
"timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "O-JrsrsVJhUQ",
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
},
"outputs": [],
"source": [
"# Converting data to 2D tensor\n",
"\n",
"train_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "exJD8AI7KE4g",
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
},
"outputs": [],
"source": [
"# Converting test data to 2D tensor\n",
"\n",
"test_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2u0R2sIsLuq5"
},
"outputs": [],
"source": [
"x_train, y_train = None\n",
"x_test, y_test = None\n",
"\n",
"print(x_train.shape, y_train.shape)\n",
"print(x_test.shape, y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8wIPOtAGLZlh"
},
"source": [
"## এসভিআর মডেল তৈরি করা\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EhA403BEPEiD"
},
"outputs": [],
"source": [
"# Create model using RBF kernel\n",
"\n",
"model = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GS0UA3csMbqp",
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
},
"outputs": [],
"source": [
"# Fit model on training data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rz_x8S3UrlcF"
},
"source": [
"### মডেল পূর্বাভাস তৈরি করুন\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XR0gnt3MnuYS",
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
},
"outputs": [],
"source": [
"# Making predictions\n",
"\n",
"y_train_pred = None\n",
"y_test_pred = None"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_2epncg-SGzr"
},
"source": [
"## মডেলের কার্যক্ষমতা বিশ্লেষণ\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scaling the predictions\n",
"\n",
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
"y_test_pred = scaler.inverse_transform(y_test_pred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xmm_YLXhq7gV",
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
},
"outputs": [],
"source": [
"# Scaling the original values\n",
"\n",
"y_train = scaler.inverse_transform(y_train)\n",
"y_test = scaler.inverse_transform(y_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "u3LBj93coHEi",
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
},
"outputs": [],
"source": [
"# Extract the timesteps for x-axis\n",
"\n",
"train_timestamps = None\n",
"test_timestamps = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(25,6))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.title(\"Training data prediction\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LnhzcnYtXHCm",
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
},
"outputs": [],
"source": [
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 225
},
"id": "53Q02FoqQH4V",
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
},
"outputs": [],
"source": [
"plt.figure(figsize=(10,3))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "clOAUH-SXCJG",
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
},
"outputs": [],
"source": [
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DHlKvVCId5ue"
},
"source": [
"## সম্পূর্ণ ডেটাসেট পূর্বাভাস\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cOFJ45vreO0N",
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
},
"outputs": [],
"source": [
"# Extracting load values as numpy array\n",
"data = None\n",
"\n",
"# Scaling\n",
"data = None\n",
"\n",
"# Transforming to 2D tensor as per model input requirement\n",
"data_timesteps=None\n",
"\n",
"# Selecting inputs and outputs from data\n",
"X, Y = None, None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ESSAdQgwexIi"
},
"outputs": [],
"source": [
"# Make model predictions\n",
"\n",
"# Inverse scale and reshape\n",
"Y_pred = None\n",
"Y = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 328
},
"id": "M_qhihN0RVVX",
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
},
"outputs": [],
"source": [
"plt.figure(figsize=(30,8))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AcN7pMYXVGTK",
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
},
"outputs": [],
"source": [
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**অস্বীকৃতি**: \nএই নথিটি AI অনুবাদ পরিষেবা [Co-op Translator](https://github.com/Azure/co-op-translator) ব্যবহার করে অনুবাদ করা হয়েছে। আমরা যথাসম্ভব সঠিক অনুবাদের চেষ্টা করি, তবে অনুগ্রহ করে মনে রাখবেন যে স্বয়ংক্রিয় অনুবাদে ত্রুটি বা অসঙ্গতি থাকতে পারে। নথিটির মূল ভাষায় থাকা সংস্করণটিকেই প্রামাণিক উৎস হিসেবে বিবেচনা করা উচিত। গুরুত্বপূর্ণ তথ্যের জন্য, পেশাদার মানব অনুবাদ ব্যবহার করার পরামর্শ দেওয়া হয়। এই অনুবাদ ব্যবহারের ফলে সৃষ্ট কোনো ভুল বোঝাবুঝি বা ভুল ব্যাখ্যার জন্য আমরা দায়ী নই।\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Recurrent_Neural_Networks.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"coopTranslator": {
"original_hash": "e86ce102239a14c44585623b9b924a74",
"translation_date": "2025-08-29T23:23:56+00:00",
"source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb",
"language_code": "bn"
}
},
"nbformat": 4,
"nbformat_minor": 1
}