You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.2 KiB
100 lines
3.2 KiB
{
|
|
"metadata": {
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": 3
|
|
},
|
|
"orig_nbformat": 4,
|
|
"coopTranslator": {
|
|
"original_hash": "27de2abc0235ebd22080fc8f1107454d",
|
|
"translation_date": "2025-08-29T15:43:46+00:00",
|
|
"source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb",
|
|
"language_code": "ar"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2,
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from textblob import TextBlob\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# You should download the book text, clean it, and import it here\n",
|
|
"with open(\"pride.txt\", encoding=\"utf8\") as f:\n",
|
|
" file_contents = f.read()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"book_pride = TextBlob(file_contents)\n",
|
|
"positive_sentiment_sentences = []\n",
|
|
"negative_sentiment_sentences = []"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for sentence in book_pride.sentences:\n",
|
|
" if sentence.sentiment.polarity == 1:\n",
|
|
" positive_sentiment_sentences.append(sentence)\n",
|
|
" if sentence.sentiment.polarity == -1:\n",
|
|
" negative_sentiment_sentences.append(sentence)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n",
|
|
"for sentence in positive_sentiment_sentences:\n",
|
|
" print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n",
|
|
"for sentence in negative_sentiment_sentences:\n",
|
|
" print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**إخلاء المسؤولية**: \nتم ترجمة هذا المستند باستخدام خدمة الترجمة بالذكاء الاصطناعي [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو معلومات غير دقيقة. يجب اعتبار المستند الأصلي بلغته الأصلية المصدر الموثوق. للحصول على معلومات حاسمة، يُوصى بالاستعانة بترجمة بشرية احترافية. نحن غير مسؤولين عن أي سوء فهم أو تفسيرات خاطئة ناتجة عن استخدام هذه الترجمة.\n"
|
|
]
|
|
}
|
|
]
|
|
} |