{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Build Classification Model" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", "from sklearn.svm import SVC\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 0 indian 0 0 0 0 0 \n", "1 1 indian 1 0 0 0 0 \n", "2 2 indian 0 0 0 0 0 \n", "3 3 indian 0 0 0 0 0 \n", "4 4 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 382 columns]" ], "text/html": "
\n | Unnamed: 0 | \ncuisine | \nalmond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n0 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n1 | \nindian | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n2 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n3 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n4 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 382 columns
\n\n | almond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \nartichoke | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 380 columns
\n\n | 0 | \n
---|---|
indian | \n0.530435 | \n
thai | \n0.344293 | \n
japanese | \n0.108792 | \n
chinese | \n0.015001 | \n
korean | \n0.001480 | \n