{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "orig_nbformat": 2, "kernelspec": { "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", "display_name": "Python 3.7.0 64-bit ('3.7')" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "source": [ "## Linear Regression for Pumpkins - Lesson 2" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " City Name Type Package Variety Sub Variety Grade \\\n", "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", "\n", " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", "\n", " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", "70 NaN NaN NaN NaN N NaN NaN \n", "71 NaN NaN NaN NaN N NaN NaN \n", "72 NaN NaN NaN NaN N NaN NaN \n", "73 NaN NaN NaN NaN N NaN NaN \n", "74 NaN NaN NaN NaN N NaN NaN \n", "\n", " Unnamed: 25 \n", "70 NaN \n", "71 NaN \n", "72 NaN \n", "73 NaN \n", "74 NaN \n", "\n", "[5 rows x 26 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" }, "metadata": {}, "execution_count": 1 } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", "\n", "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", "\n", "pumpkins.head()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "City Name 0\n", "Type 406\n", "Package 0\n", "Variety 0\n", "Sub Variety 167\n", "Grade 415\n", "Date 0\n", "Low Price 0\n", "High Price 0\n", "Mostly Low 24\n", "Mostly High 24\n", "Origin 0\n", "Origin District 396\n", "Item Size 114\n", "Color 145\n", "Environment 415\n", "Unit of Sale 404\n", "Quality 415\n", "Condition 415\n", "Appearance 415\n", "Storage 415\n", "Crop 415\n", "Repack 0\n", "Trans Mode 415\n", "Unnamed: 24 415\n", "Unnamed: 25 391\n", "dtype: int64" ] }, "metadata": {}, "execution_count": 2 } ], "source": [ "pumpkins.isnull().sum()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " Month Package Low Price High Price Price\n70 9 1 1/9 bushel cartons 15.00 15.0 13.636364\n71 9 1 1/9 bushel cartons 18.00 18.0 16.363636\n72 10 1 1/9 bushel cartons 18.00 18.0 16.363636\n73 10 1 1/9 bushel cartons 17.00 17.0 15.454545\n74 10 1 1/9 bushel cartons 15.00 15.0 13.636364\n... ... ... ... ... ...\n1738 9 1/2 bushel cartons 15.00 15.0 30.000000\n1739 9 1/2 bushel cartons 13.75 15.0 28.750000\n1740 9 1/2 bushel cartons 10.75 15.0 25.750000\n1741 9 1/2 bushel cartons 12.00 12.0 24.000000\n1742 9 1/2 bushel cartons 12.00 12.0 24.000000\n\n[415 rows x 5 columns]\n" ] } ], "source": [ "\n", "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", "new_columns = ['Package', 'Month', 'Low Price', 'High Price', 'Date']\n", "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", "\n", "# Get an average between low and high price for the base pumpkin price\n", "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", "\n", "# Convert the date to its month only\n", "month = pd.DatetimeIndex(pumpkins['Date']).month\n", "\n", "# Create a new dataframe with this basic data\n", "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", "\n", "# Convert the price if the Package contains fractional bushel values\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", "\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", "\n", "print(new_pumpkins)\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAciklEQVR4nO3df3Ac5Z3n8fc38g+EYiIEkg8LCxNH5YXDLE7msIkTytnEsWM48PqyF1y4lmQJLq64S7K+8y4+U8tyBWXnvMdCXa4uZwgLWVgne4mj+EIWoyVh2c2CknFskAlxzA8HIxNLizHhhwK2+N4f01LGo+751dKM9PjzqlJp+umnu7/9dM9Ho56WxtwdEREJ13vqXYCIiIwvBb2ISOAU9CIigVPQi4gETkEvIhK4KfUuIM6ZZ57pc+bMqXcZIiKTxq5du/7F3Vvj5k3IoJ8zZw7ZbLbeZYiITBpm9sukebp0IyISOAW9iEjgFPQiIoFT0IuIBE5BLyISOAW9iEjgSt5eaWb3AJcD/e5+QdS2Bfi3wDvAc8Dn3P1ozLLLgTuBBuBud988hrXX1NV3Pc6PnjsyMr14bgsPXHfJqH5Lb3+U/f1vjkx3tjXRvW5JLUpM1LW7jy0793Ho6CCzmhtZv2weKxe017UmEamdcl7R3wssL2jrBi5w9wuBXwAbChcyswbgfwGfAs4HVpvZ+amqrZPCkAf40XNHuPqux09oKwx5gP39b7L09kfHu8REXbv72LC9l76jgzjQd3SQDdt76drdV7eaRKS2Sga9uz8GHCloe9jdj0eTTwBnxyx6MfCsuz/v7u8A3wCuTFlvXRSGfFJ7YciXaq+FLTv3MXhs6IS2wWNDbNm5r04ViUitjcU1+j8C/i6mvR04mDf9UtQWy8zWmlnWzLIDAwNjUJYAHDo6WFG7iIQnVdCb2UbgOPBA2kLcfau7Z9w909oa++8apAqzmhsraheR8FQd9Gb2WXJv0l7t8Z9H2AfMzps+O2qbdBbPbSmrvbOtKbZfUnstrF82j8apDSe0NU5tYP2yeXWqSERqraqgj+6m+RPgCnd/K6HbT4BOMzvXzKYBVwE7qiuzvh647pJRoR531033uiWjQr3ed92sXNDOplXzaW9uxID25kY2rZqvu25ETiJW6sPBzWwbsAQ4EzgM3EzuLpvpwCtRtyfc/Xozm0XuNsoV0bIrgDvI3V55j7vfVk5RmUzG9d8rRUTKZ2a73D0TO69U0NeDgl5EpDLFgl5/GSsiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBKxn0ZnaPmfWb2d68tj8ws6fN7F0zi/3/x1G/A2bWa2Z7zEz/YF5EpA7KeUV/L7C8oG0vsAp4rIzlP+buFyX9Q3wRERlfU0p1cPfHzGxOQdszAGY2PlWJiMiYGe9r9A48bGa7zGxtsY5mttbMsmaWHRgYGOeyREROHuMd9B9x9w8CnwJuMLNLkzq6+1Z3z7h7prW1dZzLEhE5eYxr0Lt7X/S9H/gOcPF4bk9EREYbt6A3syYzmzH8GPgkuTdxRUSkhsq5vXIb8Dgwz8xeMrNrzez3zewl4BLgQTPbGfWdZWbfjxadCfyTmT0J/Bh40N0fGp/dEBGRJOXcdbM6YdZ3YvoeAlZEj58HfjdVdSIikpr+MlZEJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQmcgl5EJHAKehGRwCnoRUQCp6AXEQlcyQ8eMbN7gMuBfne/IGr7A+DPgfOAi909m7DscuBOoAG42903j1Hdo3Tt7mPLzn0cOjrIrOZG1i+bx8oF7VWta+ntj7K//82R6c62Jl4YeJPj/ts+Uwye3XTZqGXn3PjgqLYDm0f3G3ZTVy/beg4y5E6DGasXzubWlfPLqrPcfY7bn+51S8raxskuzfFZeFs3h19/Z2R65oxp9GxcOjJd7Fwptd2xPN8rUWqfikkzlsXUaywmE3P34h3MLgXeAL6eF/TnAe8C/wf4L3FBb2YNwC+ApcBLwE+A1e7+s1JFZTIZz2Zjf3bE6trdx4btvQweGxppa5zawKZV8ys+4IWhWExh2Mc9cYfFhf1NXb3c/8SLo9rXLOoo+QQod5+T9kdhX1qa41MYiMOGg7HYubJmUUfR7Y7l+V6JUvtUTJqxLKZeYzERmdkud8/EzSt56cbdHwOOFLQ94+77Six6MfCsuz/v7u8A3wCuLLPmimzZue+EAw0weGyILTtLlThauSEPnPAKvxrbeg5W1J6v3H1O2p9K9vNkleb4xAVisfZKtjuW53slxnOfqlWvsZhsxvMafTuQfxRfitpimdlaM8uaWXZgYKCiDR06OlhR+0QxlPDbVFJ7vsm6z5NJmuMzntudjMd+vMZyMo5FPUyYN2Pdfau7Z9w909raWtGys5obK2qfKBrMKmrPN1n3eTJJc3zGc7uT8diP11hOxrGoh/EM+j5gdt702VHbmFu/bB6NUxtOaGuc2sD6ZfMqXldnW1PZfaekfL6vXji7ovZ85e5z0v5Usp8nqzTHZ+aMaRW1V7LdsTzfKzGe+1Steo3FZDOeQf8ToNPMzjWzacBVwI7x2NDKBe1sWjWf9uZGDGhvbqz6zZjudUtGhWBnW9OoUI+76ybp7pqk9ltXzmfNoo6RVzUNZmW/OVXuPiftj96ILS3N8enZuHRUAOa/aVnsXCm13bE83ytRap+KSTOWxdRrLCabcu662QYsAc4EDgM3k3tz9n8CrcBRYI+7LzOzWeRuo1wRLbsCuIPc7ZX3uPtt5RRV6V03IiInu2J33ZQM+npQ0IuIVCbV7ZUiIjK5KehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAKnoBcRCVzJoDeze8ys38z25rW1mFm3me2Pvp+esOyQme2Jvsbl06VERKS4cl7R3wssL2i7EXjE3TuBR6LpOIPuflH0dUX1ZYqISLVKBr27P0buowPzXQncFz2+D1g5xnWJiMgYqfYa/Ux3fzl6/CtgZkK/U8wsa2ZPmJl+GIiI1MGUtCtwdzezpA+ePcfd+8zs/cAPzKzX3Z+L62hma4G1AB0dHWnLEhGRSLWv6A+b2VkA0ff+uE7u3hd9fx54FFiQtEJ33+ruGXfPtLa2VlmWiIgUqjbodwDXRI+vAb5b2MHMTjez6dHjM4HFwM+q3J6IiFSpnNsrtwGPA/PM7CUzuxbYDCw1s/3AJ6JpzCxjZndHi54HZM3sSeCHwGZ3V9CLiNRYyWv07r46YdbHY/pmgc9Hj/8ZmJ+qOhERSU1/GSsiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiASurA8HN7N7gMuBfne/IGprAb4JzAEOAP/e3V+NWfYa4KZo8lZ3vy992aMtvf1R9ve/OTLd2dZE97olAHTt7mPLzn0cOjrIrOZG1i+bx8oF7RWtL86BzZeNWn/Sp6THmWKw8P0t/Oi5IyNti+e28MB1l5S1/MLbujn8+jsj0zNnTKNn49JR/YqNTSjm3PjgqLbh45Nm2Qtvfohfvz000n7a9AaeumX5yHSxc6tUTcXmV7Nse3NjWef4TV29bOs5yJA7DWasXjibW1eW9xlB59744AnnuAEvjME419LJ8HwoZO6lo8nMLgXeAL6eF/T/HTji7pvN7EbgdHf/04LlWoAskAEc2AV8KO4HQr5MJuPZbLbsnUgK5c62Jm74WCcbtvcyeOy3T9bGqQ1sWjU/8YlQTsgPu+MzF41af1rlhH1hyA8rDPtiYxPKyR0XIMNKBUmxZU+b3nBCyOe3P3XLcrp29yWeW1/65p6iNRXbbjHlLpt0jt/U1cv9T7w4qv+aRR0lw74w5IeVE/ZpjtFYCvn5YGa73D0TN6+sSzfu/hhwpKD5SmD41fl9wMqYRZcB3e5+JAr3bmB5TL9UkkJ5f/+bbNm5b1QIDx4bYsvOfRWvL07c+tPKf4WfJC7k49qLjY0UFxfy+e3VnFu1klTHtp6Dsf2T2vMlvSSs5LfYejtZnw9prtHPdPeXo8e/AmbG9GkH8s+gl6K2UcxsrZllzSw7MDCQoqwTHTo6WFH7WK1fwjfe51ZacXUMJfwGn9QuYRiTN2M9d/0n1Zni7lvdPePumdbW1rEoC4BZzY0VtY/V+iV8431upRVXR4NZbN+kdglDmqA/bGZnAUTf+2P69AGz86bPjtrGVGdbU2L7+mXzaJzacEJ749QG1i+bV/H64sStP63Fc1tK9pk5Y1pZ7cXGRoo7bXr8cR1ur+bcqpWkOlYvnB3TO7k9X9KPgsn0I+JkfT6kCfodwDXR42uA78b02Ql80sxON7PTgU9GbWOqe92SUQdq+M2VlQva2bRqPu3NjRi5OxOKvRGbtL44BzZfNmr9lZhio0O93LtuejYuHRXqcXfdFBubUCS9mVfOm3zFln3qluWjwj7/rpti51apmorNr3bZcs7xW1fOZ82ijpFX8A1mZb0RC7k3XAvP8XLvuklzjMbSyfB8iFPuXTfbgCXAmcBh4GagC/hboAP4JbnbK4+YWQa43t0/Hy37R8B/jVZ1m7v/VantVXrXjYjIya7YXTdlBX2tKehFRCqT+vZKERGZvBT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAQuVdCb2RfNbK+ZPW1mX4qZv8TMXjOzPdHXn6XZnoiIVG5KtQua2QXAdcDFwDvAQ2b2PXd/tqDrP7r75SlqFBGRFNK8oj8P6HH3t9z9OPAPwKqxKUtERMZKmqDfC3zUzM4ws1OBFUDcR8lfYmZPmtnfmdm/TrE9ERGpQtWXbtz9GTP7MvAw8CawBxgq6PZT4Bx3f8PMVpD7QPHOuPWZ2VpgLUBHR0e1ZYmISIFUb8a6+9fc/UPufinwKvCLgvm/dvc3osffB6aa2ZkJ69rq7hl3z7S2tqYpS0RE8qS966Yt+t5B7vr83xTM/1dmZtHji6PtvZJmmyIiUpmqL91Evm1mZwDHgBvc/aiZXQ/g7l8FPg38BzM7DgwCV7m7p9ymiIhUIFXQu/tHY9q+mvf4K8BX0mxDRETS0V/GiogETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigVPQi4gETkEvIhI4Bb2ISOAU9CIigUv1wSNm9kXgOsCAu9z9joL5BtwJrADeAj7r7j9Ns81auamrl209Bxlyp8GM97eeyvMDbzEU8wFZnW1NdK9bAsDVdz3Oj547MqrPewzeLVjUgBc2Xxa73OK5LTxw3SX8zsbv85uh3y54SoPx89tWALDwtm4Ov/7OyLyZM6bRs3Fp0fVVs++rF87m1pXzy1p26e2Psr//zZHp/LHp2t3Hlp37OHR0kFnNjaxfNo+VC9qr2l6x45O/jnLWPefGB0et/8Dmy7ipq5cHnniR/MO2eG4LB14ZHNmHOWc08sTzr8au/8KbH+LXbw+NLHva9AaeumV5ye1C6eNXbNlSip1TpSQdw/FeNo1i50CpmtI8jwoV29Z4j41V+8l+ZnYB8A3gYuAd4CHgend/Nq/PCuA/kQv6hcCd7r6w1LozmYxns9mq6hoLN3X1cv8TL1a0TGdbE20zpseGfDEGfHhuS0XLndJgvO/UqSeE/LCZM6bxgbb3xq6vnJM0ad/XLOooGb6FIT+ss62JGz7WyYbtvQwe+23wNU5t4IMd74uttdj2yj0+nW1NsfXkrzsuMNNas6iDHbv7Tgj5YcNhX2y7ixPOh+HjV2zZUmFfGPLDygn7rt19scdw06r5JUMpzbJpFDufM+e0FK0p6UVbNWFfbP+BMRkbM9vl7pm4eWku3ZwH9Lj7W+5+HPgHch8Qnu9K4Oue8wTQbGZnpdhmTWzrOVjxMvv736w45AEcKl7uN0MeG/IAh19/J3F95Wwnad/LGZO4UB1u37Jz3wknMsDgsaHEmoptr9zjk1RPNce3Ett6DsaGPJDYni/N8SslLuSLtedLOoZbdu4b12XTKHY+l6ppLI9DsW3VYmzSBP1e4KNmdoaZnUruVfvsgj7tQP5IvxS1jWJma80sa2bZgYGBFGWlF3d55mSRtO9px+TQ0cExqWMsahnv4xvq+ZN0DMs5tmmWTaPY+VzLmoptqxZ1VB307v4M8GXgYXKXbfYApV+uJK9vq7tn3D3T2tpa7WrGRINZXbdfT0n7nnZMZjU3jkkdY1HLeB/fUM+fpGNYzrFNs2waxc7nWtZUbFu1qCPVXTfu/jV3/5C7Xwq8CvyioEsfJ77KPztqm9BWLyz8xaS0zrYmFs9tqXg5g4qXO6XBmDljWuy8mTOmJa6vnO0k7Xs5Y9LZ1pTYvn7ZPBqnNpzQ3ji1IbGmYtsr9/gk1VPN8a3E6oWzOW16Q+y8pPZ8aY5fKac0xAdfUnu+pGO4ftm8cV02jWLnc6maxvI4FNtWLcYmVdCbWVv0vYPc9fm/KeiyA/hDy1kEvObuL6fZZi3cunI+axZ1jLwaaDCjs60p8dXB8J0lD1x3SeJJ8J6YRYfvuolbbvHcFg5svmzUE3D4TbOejUtHhf3wXTdJ6yvnDaS4fS/njViA7nVLRoXr8NisXNDOplXzaW9uxID25kY2rZrPA9ddUvH2Sh2f4XV0r1tSct1Jb14e2HwZaxZ1UHjYFs9tOWEfFs9tiV3/U7csHxXq+XfdFNtuqeNXbNlSfn7bisRzqpSkY1jOG4Zplk2j2PlcqqY0z6NCxbZVi7Gp+q4bADP7R+AM4Biwzt0fMbPrAdz9q9HtlV8BlpO7vfJz7l7ydpp633UjIjLZFLvrJtV99O7+0Zi2r+Y9duCGNNsQEZF09JexIiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4NJ+lOAfm9nTZrbXzLaZ2SkF8z9rZgNmtif6+ny6ckVEpFJVB72ZtQNfADLufgHQAFwV0/Wb7n5R9HV3tdsTEZHqpL10MwVoNLMpwKnAofQliYjIWKo66N29D/gL4EXgZeA1d384puu/M7OnzOxbZjY7aX1mttbMsmaWHRgYqLYsEREpkObSzenAlcC5wCygyczWFHT7f8Acd78Q6AbuS1qfu29194y7Z1pbW6stS0RECqS5dPMJ4AV3H3D3Y8B24MP5Hdz9FXd/O5q8G/hQiu2JiEgV0gT9i8AiMzvVzAz4OPBMfgczOytv8orC+SIiMv6mVLugu/eY2beAnwLHgd3AVjP7b0DW3XcAXzCzK6L5R4DPpi9ZREQqYe5e7xpGyWQyns1m612GiMikYWa73D0TN09/GSsiEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBU9CLiAROQS8iEjgFvYhI4BT0IiKBq/qDRwDM7I+BzwMO9AKfc/ff5M2fDnyd3EcIvgJ8xt0PpNlmqLp297Fl5z4OHR1kVnMj65fNY+WC9sR2kWrpnDr5VB30ZtYOfAE4390HzexvgauAe/O6XQu86u4fMLOrgC8Dn0lRb5C6dvexYXsvg8eGAOg7OsiG7b1kf3mEb+/qG9UO6IkpVUk610DnVMjSXrqZAjSa2RTgVOBQwfwrgfuix98CPh59vqzk2bJz38gTb9jgsSG29RyMbd+yc18ty5OAJJ1rOqfCVnXQu3sf8BfkPiT8ZeA1d3+4oFs7cDDqfxx4DTgjbn1mttbMsmaWHRgYqLasSenQ0cHY9qGEj3lM6i9SStK5o3MqbFUHvZmdTu4V+7nALKDJzNZUuz533+ruGXfPtLa2VruaSWlWc2Nse0PCLz9J/UVKSTp3dE6FLc2lm08AL7j7gLsfA7YDHy7o0wfMBogu77yP3Juykmf9snk0Tm04oa1xagOrF86ObV+/bF4ty5OAJJ1rOqfCluaumxeBRWZ2KjAIfBzIFvTZAVwDPA58GviBe8L1iJPY8JtgcXdCZM5p0R0SMmaKnWsSLkuTu2Z2C7m7aI4Du8ndarkRyLr7DjM7BfhrYAFwBLjK3Z8vtd5MJuPZbOHPDBERSWJmu9w9EztvIr7AVtCLiFSmWNDrL2NFRAKnoBcRCZyCXkQkcAp6EZHAKehFRAI3Ie+6MbMB4JdFupwJ/EuNyqnERKxLNZVvItY1EWuCiVnXRKwJalfXOe4e+28FJmTQl2Jm2aTbiOppItalmso3EeuaiDXBxKxrItYEE6MuXboREQmcgl5EJHCTNei31ruABBOxLtVUvolY10SsCSZmXROxJpgAdU3Ka/QiIlK+yfqKXkREyqSgFxEJ3IQPejO7x8z6zWxvXluLmXWb2f7o++kToKY/N7M+M9sTfa2ocU2zzeyHZvYzM3vazL4Ytdd7rJLqqtt4mdkpZvZjM3syqumWqP1cM+sxs2fN7JtmNq1WNZWo614zeyFvrC6qZV1RDQ1mttvMvhdN13WsEmqaCON0wMx6o+1no7a6PgdhEgQ9cC+wvKDtRuARd+8EHomm610TwF+6+0XR1/drXNNx4D+7+/nAIuAGMzuf+o9VUl1Qv/F6G/g9d/9d4CJguZktAr4c1fQB4FXg2hrWVKwugPV5Y7WnxnUBfBF4Jm+63mMVVxPUf5wAPhZtf/je+Xo/Byd+0Lv7Y+Q+tCTflcB90eP7gJUToKa6cveX3f2n0ePXyT0B2qn/WCXVVTee80Y0OTX6cuD3gG9F7fUYq6S66srMzgYuA+6Opo06j1VhTRNcXZ+DMAmCPsFMd385evwrYGY9i8nzH83sqejSTs1/PRtmZnPIfapXDxNorArqgjqOV/Rr/x6gH+gGngOOuvvxqMtL1OEHUmFd7j48VrdFY/WXZja9xmXdAfwJ8G40fQb1H6vCmobVc5wg94P5YTPbZWZro7a6Pwcna9CPiD6Dtu6veoD/Dcwl9yv3y8D/qEcRZvZe4NvAl9z91/nz6jlWMXXVdbzcfcjdLwLOBi4GfqeW209SWJeZXQBsIFffvwFagD+tVT1mdjnQ7+67arXNUorUVLdxyvMRd/8g8ClylykvzZ9Zr+fgZA36w2Z2FkD0vb/O9eDuh6Mn6bvAXeTCo6bMbCq5MH3A3bdHzXUfq7i6JsJ4RXUcBX4IXAI0m9mUaNbZQF89aiqoa3l0+cvd/W3gr6jtWC0GrjCzA8A3yF2yuZP6jtWomszs/jqPEwDu3hd97we+E9VQ9+fgZA36HcA10eNrgO/WsRZg5AAO+31gb1Lfcdq+AV8DnnH32/Nm1XWskuqq53iZWauZNUePG4Gl5N47+CHw6ahbPcYqrq6f54WEkbu+W7OxcvcN7n62u88BrgJ+4O5XU8exSqhpTT3HKdpuk5nNGH4MfDKqof555e4T+gvYRu5X+2PkrgVeS+4a4SPAfuDvgZYJUNNfA73AU+QO7Fk1rukj5H4lfArYE32tmABjlVRX3cYLuBDYHW17L/BnUfv7gR8DzwL/F5he47FKqusH0VjtBe4H3lvLuvLqWwJ8byKMVUJNdR2naEyejL6eBjZG7XV9Drq7/gWCiEjoJuulGxERKZOCXkQkcAp6EZHAKehFRAKnoBcRCZyCXkQkcAp6EZHA/X9qczFM1iFI5AAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "\n", "price = new_pumpkins.Price\n", "month = new_pumpkins.Month\n", "plt.scatter(price, month)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Text(0, 0.5, 'Pumpkin Price')" ] }, "metadata": {}, "execution_count": 5 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAENCAYAAAAIbA6TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAR3UlEQVR4nO3de5BkZX3G8e8ji6JAXNERUVlX0VLR4BKnkCipwgsGxSioscRE8ZbVMla0YqygVimaVLkkqCkvMa4BRcX7DUo0iop3Ay66AoJGpVBBhCVCLWqJsvzyR5/JDLszs73jnD6zvN9P1VT3eU93n2cPyzNn3z59OlWFJKkdtxk6gCRpsix+SWqMxS9JjbH4JakxFr8kNcbil6TG9Fb8SfZKcn6S7yb5XpLXduP3TnJekh8l+VCS2/aVQZK0oz6P+G8EHlVVDwHWAUcnORw4GXhTVd0XuA54Xo8ZJEnb6a34a+RX3eKe3U8BjwI+2o2fDhzbVwZJ0o56neNPskeSzcA1wDnAj4Hrq+qm7iFXAPfoM4Mk6ZZW9fniVbUNWJdkNfAJ4AHjPjfJemA9wN577/3QBzxg7KdKkoALLrjg2qqa2n681+KfUVXXJzkX+FNgdZJV3VH/PYErF3jORmAjwPT0dG3atGkSUSXpViPJT+Yb7/OsnqnuSJ8ktweOAi4FzgWe2j3sBODMvjJIknbU5xH/AcDpSfZg9Avmw1X1qSSXAB9M8s/Ad4BTe8wgSdpOb8VfVRcCh84zfhlwWF/blSQtzk/uSlJjLH5JaozFL0mNsfglqTEWvyQ1ZiIf4NLKsvbEs4eOwOUbjhk6gtQsi19N85egWuRUjyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGtNb8Sc5MMm5SS5J8r0kL+nGT0pyZZLN3c/j+8ogSdrRqh5f+ybgZVX17ST7AhckOadb96aqOqXHbUuSFtBb8VfVVcBV3f0bklwK3KOv7UmSxtPnEf//S7IWOBQ4D3gE8OIkzwI2MfpXwXWTyCFpYWtPPHvoCFy+4ZihIzSh9zd3k+wDfAx4aVVtBd4OHASsY/Qvgjcs8Lz1STYl2bRly5a+Y0pSM3ot/iR7Mir9M6rq4wBVdXVVbauqm4F3AofN99yq2lhV01U1PTU11WdMSWpKn2f1BDgVuLSq3jhn/IA5DzsOuLivDJKkHfU5x/8I4JnARUk2d2OvBI5Psg4o4HLgBT1mkCRtp8+zer4GZJ5Vn+5rm4vxjStJGvGTu5LUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWpMb8Wf5MAk5ya5JMn3krykG98vyTlJftjd3qmvDJKkHfV5xH8T8LKqOhg4HPjbJAcDJwJfqKr7AV/oliVJE9Jb8VfVVVX17e7+DcClwD2AJwGndw87HTi2rwySpB1NZI4/yVrgUOA8YP+quqpb9Qtg/wWesz7JpiSbtmzZMomYktSE3os/yT7Ax4CXVtXWueuqqoCa73lVtbGqpqtqempqqu+YktSMsYo/yRFJntPdn0py7zGftyej0j+jqj7eDV+d5IBu/QHANbseW5K0VDst/iSvAf4ReEU3tCfwvjGeF+BU4NKqeuOcVWcBJ3T3TwDO3JXAkqQ/zKoxHnMco/n5mTdqf55k3zGe9wjgmcBFSTZ3Y68ENgAfTvI84CfA03Y5tSRpycYp/t9VVSUpgCR7j/PCVfU1IAusfvSY+SRJy2ycOf4PJ3kHsDrJ3wCfB97ZbyxJUl92esRfVackOQrYCtwfeHVVndN7MklSL3Za/N0ZPF+dKfskt0+ytqou7zucJGn5jTPV8xHg5jnL27oxSdJuaJziX1VVv5tZ6O7ftr9IkqQ+jVP8W5I8cWYhyZOAa/uLJEnq0zinc74QOCPJWxmdnvkz4Fm9ppIk9Wacs3p+DBzeXXOHqvpV76kkSb1ZsPiT/HVVvS/J3283DsB2l2GQJO0mFjvin/mE7jiXZ5Ak7SYWLP6qekeSPYCtVfWmCWaSJPVo0bN6qmobcPyEskiSJmCcs3q+3p3R8yHg1zODM1+rKEnavYxT/Ou629fNGSvgUcsfR5LUt3FO53zkJIJIkiZjwTn+JA9L8t0kv0ryzSQPnGQwSVI/Fntz923APwB3Bt4I/NtEEkmSerVY8d+mqs6pqhur6iPA1KRCSZL6s9gc/+okT15ouao+3l8sSVJfFiv+LwN/scByARa/JO2GFvvk7nMmGUSSNBnjXI9fknQrYvFLUmMsfklqzDiXbCDJw4G1cx9fVe/pKZMkqUc7Lf4k7wUOAjYD27rhAix+SdoNjXPEPw0cXFXVdxhJWgnWnnj20BG4fMMxvb32OHP8FwN329UXTnJakmuSXDxn7KQkVybZ3P08fldfV5L0hxnniP8uwCVJzgdunBmsqifu5HnvBt7KjlNCb6qqU3YlpCRp+YxT/Cct5YWr6itJ1i7luZKk/oxzPf4vL/M2X5zkWcAm4GVVdd18D0qyHlgPsGbNmmWOIEntWux6/F/rbm9IsnXOzw1Jti5xe29ndIbQOuAq4A0LPbCqNlbVdFVNT015YVBJWi6LXavniO523+XaWFVdPXM/yTuBTy3Xa0uSxrPTs3qSPG+esQ1L2ViSA+YsHsfojCFJ0gSN8+buU5L8tqrOAEjyNuD2O3tSkg8ARwJ3SXIF8BrgyCTrGH0A7HLgBUvMLUlaorGKHzgryc3A0cD1VfXcnT2pqo6fZ/jUXcwnSVpmCxZ/kv3mLD4f+CTwdeC1Sfarql/2HU6StPwWO+K/gNGUTObcHtP9FHCf3tNJkpbdYmf13HuSQSRJkzHO1Tn3Al4EHMHoSP+rwH9U1W97ziZJ6sE4b+6+B7gBeEu3/AzgvcBf9hVKktSfcYr/wVV18Jzlc5Nc0lcgSVK/xrks87eTHD6zkORhjK6zI0naDY1zxP9Q4BtJftotrwF+kOQioKrqkN7SSZKW3TjFf3TvKSRJEzPOZZl/kuROwIHc8svWv91nMElSP8Y5nfOfgGcDP2Z0Oifd7aP6iyVJ6ss4Uz1PAw6qqt/1HUaS1L9xv2x9dd9BJEmTMc4R/+uB7yS5mF37snVJ0go0TvGfDpwMXATc3G8cSVLfxin+31TVm3tPIkmaiHGK/6tJXg+cxS2nejydU5J2Q+MU/6Hd7eFzxjydU5J2U+N8gOuRkwgiSZqMcT7A9er5xqvqdcsfR5LUt3Gmen495/5ewBOAS/uJI0nq2zhTPW+Yu5zkFOCzvSWSJPVqnE/ubu8OwD2XO4gkaTLGmeO/iNmLs+0BTAHO70vSbmqcOf4nzLl/E3B1Vd3UUx5JUs8WLP4kewEvBO7L6HINp1r4krT7W2yO/3RgmlHpPw54wyKPlSTtJhab6jm4qv4YIMmpwPm78sJJTmM0TXRNVT24G9sP+BCwFrgceFpVXbfrsSVJS7XYEf/vZ+4scYrn3ez4fb0nAl+oqvsBX+iWJUkTtFjxPyTJ1u7nBuCQmftJtu7shavqK8Avtxt+EqMpJLrbY5eUWpK0ZAtO9VTVHj1sb/+quqq7/wtg/x62IUlaxFI+wLUsqqqY/XzADpKsT7IpyaYtW7ZMMJkk3bpNuvivTnIAQHd7zUIPrKqNVTVdVdNTU1MTCyhJt3aTLv6zgBO6+ycAZ054+5LUvN6KP8kHgG8C909yRZLnARuAo5L8EHhMtyxJmqBxLtmwJFV1/AKrHt3XNiVJOzfYm7uSpGFY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhqzaoiNJrkcuAHYBtxUVdND5JCkFg1S/J1HVtW1A25fkprkVI8kNWao4i/gc0kuSLJ+oAyS1KShpnqOqKork9wVOCfJ96vqK3Mf0P1CWA+wZs2aITJK0q3SIEf8VXVld3sN8AngsHkes7GqpqtqempqatIRJelWa+LFn2TvJPvO3AceC1w86RyS1Kohpnr2Bz6RZGb776+q/xoghyQ1aeLFX1WXAQ+Z9HYlSSOezilJjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGDFL8SY5O8oMkP0py4hAZJKlVEy/+JHsAbwMeBxwMHJ/k4EnnkKRWDXHEfxjwo6q6rKp+B3wQeNIAOSSpSamqyW4weSpwdFU9v1t+JvCwqnrxdo9bD6zvFu8P/GCiQXd0F+DagTOsFO6LWe6LWe6LWStlX9yrqqa2H1w1RJJxVNVGYOPQOWYk2VRV00PnWAncF7PcF7PcF7NW+r4YYqrnSuDAOcv37MYkSRMwRPF/C7hfknsnuS3wdOCsAXJIUpMmPtVTVTcleTHwWWAP4LSq+t6kcyzBipl2WgHcF7PcF7PcF7NW9L6Y+Ju7kqRh+cldSWqMxS9JjbH4JakxK/Y8/iHNOdvo51X1+STPAB4OXApsrKrfDxpwwpLcB3gyo9NwtwH/A7y/qrYOGkzSkvjm7jySnMHol+IdgOuBfYCPA49mtM9OGDDeRCX5O+AJwFeAxwPfYbRPjgNeVFVfGi6dpKWw+OeR5MKqOiTJKkYfLrt7VW1LEuC7VXXIwBEnJslFwLruz38H4NNVdWSSNcCZVXXowBEnJskdgVcAxwJ3BQq4BjgT2FBV1w8Yb8VI8pmqetzQOSYlyR8x+ntxT+AzVfX+Oev+vapeNFi4BTjVM7/bdNM9ezM66r8j8EvgdsCeQwYbyCpGUzy3Y/SvH6rqp0la2xcfBr4IHFlVvwBIcjfghG7dYwfMNlFJ/mShVcC6SWZZAd4F/BD4GPDcJE8BnlFVNwKHD5psARb//E4Fvs/oA2avAj6S5DJG/xE/OGSwAfwn8K0k5wF/BpwMkGSK0S/DlqytqpPnDnS/AE5O8tyBMg3lW8CXGRX99lZPOMvQDqqqp3T3P5nkVcAXkzxxyFCLcapnAUnuDlBVP0+yGngM8NOqOn/YZJOX5EHAA4GLq+r7Q+cZSpLPAZ8HTq+qq7ux/YFnA0dV1WMGjDdRSS4GjquqH86z7mdVdeA8T7tVSnIp8KCqunnO2LOBlwP7VNW9hsq2EItfGlOSOwEnMvr+iLt2w1czutbUhqq6bqhsk9ZdXv2iqtrhculJjq2qTw4QaxBJ/gX4XFV9frvxo4G3VNX9hkm2MItfWgZJnlNV7xo6x0rgvpi1UveFxS8tgyQ/rao1Q+dYCdwXs1bqvvDNXWlMSS5caBWw/ySzDM19MWt33BcWvzS+/YE/B7afyw/wjcnHGZT7YtZuty8sfml8n2J0lsbm7Vck+dLk4wzKfTFrt9sXzvFLUmO8OqckNcbil6TGWPwSkKSSvG/O8qokW5J8aomvtzrJi+YsH7nU15KWm8UvjfwaeHCS23fLRzG6MutSrQZW3FUZJbD4pbk+DRzT3T8e+MDMiiT7JflkkguT/HeSQ7rxk5KcluRLSS7rvr8AYANwUJLNSf61G9snyUeTfD/JGd1lvqWJs/ilWR8Enp5kL+AQ4Lw5614LfKf7LoZXAu+Zs+4BjM7jPgx4TXe56hOBH1fVuqp6efe4Q4GXAgcD9wEe0ecfRlqIxS91qupCYC2jo/1Pb7f6COC93eO+CNy5+wIOgLOr6saqupbRF7Ms9GnN86vqiu4qjpu7bUkT5we4pFs6CzgFOBK485jPuXHO/W0s/P/VuI+TeuURv3RLpwGvraqLthv/KvBXMDpDB7h2J182fwOwby8JpT+QRxzSHFV1BfDmeVadBJzWXZDrN4y+bnGx1/nfJF/vvrDkM8DZy51VWiov2SBJjXGqR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSY/wO3IaprEH6JsgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "\n", "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", "plt.ylabel(\"Pumpkin Price\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ] }