# Construindo uma aplicação Web para recomendar culinária
Nesta lição, você construirá um modelo de classificação usando algumas das técnicas que aprendeu nas lições anteriores e com o _dataset_ de cozinhas deliciosas usado ao longo desta série. Além disso, você construirá uma pequena aplicação Web para usar um modelo salvo, aproveitando o tempo de execução da web do Onnx.
Um dos usos práticos mais úteis do aprendizado de máquina é criar sistemas de recomendação, e você pode dar o primeiro passo nessa direção hoje!
[![Introdução a Sistemas de Recomendação](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "Applied ML")
> 🎥 Clique na imagem acima para ver um vídeo
## [Questionário inicial](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/25?loc=ptbr)
Nesta lição você aprenderá:
- Como construir um modelo e salvá-lo como um modelo Onnx
- Como usar o Netron para visualizar o modelo
- Como usar seu modelo em uma aplicação Web para inferência
## Construindo seu modelo
Construir sistemas aplicados de ML é uma parte importante para o aproveitamento dessas tecnologias voltadas para sistemas de negócios. Você pode usar modelos dentro de aplicações Web (e, portanto, usá-los em um contexto offline, se necessário) usando Onnx.
Em uma [lição anterior](../../../3-Web-App/1-Web-App/translations/README.pt-br.md), você construiu um modelo de regressão sobre avistamentos de OVNIs, aplicou "pickle" e o usou em uma aplicação Flask. Embora seja muito útil conhecer essa arquitetura, é uma aplicação full-stack Python e seus requisitos podem incluir o uso de JavaScript.
Nesta lição, você pode construir um sistema básico baseado em JavaScript para inferência. Mas primeiro, você precisa treinar um modelo e convertê-lo para uso através do Onnx.
## Exercício - treinando um modelo de classificação
Primeiro, treine um modelo de classificação usando o _dataset_ que usamos anteriormente.
1. Comece importando algumas bibliotecas:
```python
!pip install skl2onnx
import pandas as pd
```
Você precisará da '[skl2onnx](https://onnx.ai/sklearn-onnx/)' para ajudar a converter seu modelo Scikit-learn para o formato Onnx.
1. Trabalhe com seus dados da mesma maneira que você fez nas lições anteriores, lendo um arquivo CSV usando `read_csv()`:
```python
data = pd.read_csv('../data/cleaned_cuisines.csv')
data.head()
```
1. Remova as duas primeiras colunas desnecessárias e salve os dados restantes na variável 'X':
```python
X = data.iloc[:,2:]
X.head()
```
1. Salve as categorias na variável 'y':
```python
y = data[['cuisine']]
y.head()
```
### Começando a rotina de treinamento
Usaremos a biblioteca 'SVC' que tem boa acurácia.
1. Importe as bibliotecas apropriadas do Scikit-learn:
```python
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report
```
1. Separe os dados em dados de treinamento e teste:
```python
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
```
1. Construa um modelo de classificação SVC como você fez na lição anterior:
```python
model = SVC(kernel='linear', C=10, probability=True,random_state=0)
model.fit(X_train,y_train.values.ravel())
```
1. Agora teste seu modelo, chamando o método `predict()`:
```python
y_pred = model.predict(X_test)
```
1. Imprima um relatório de classificação para verificar a qualidade do modelo:
```python
print(classification_report(y_test,y_pred))
```
Como vimos antes, a acurácia é boa:
```output
precision recall f1-score support
chinese 0.72 0.69 0.70 257
indian 0.91 0.87 0.89 243
japanese 0.79 0.77 0.78 239
korean 0.83 0.79 0.81 236
thai 0.72 0.84 0.78 224
accuracy 0.79 1199
macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199
```
### Convertendo seu modelo para o formato Onnx
Certifique-se de fazer a conversão adequada do número Tensor. Este _dataset_ tem 380 ingredientes listados, então você precisa anotar esse número usando a `FloatTensorType`:
1. Converta usando um número tensor de 380.
```python
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([None, 380]))]
options = {id(model): {'nocl': True, 'zipmap': False}}
```
1. Crie a variável onx e armazene como um arquivo chamado **model.onnx**:
```python
onx = convert_sklearn(model, initial_types=initial_type, options=options)
with open("./model.onnx", "wb") as f:
f.write(onx.SerializeToString())
```
> Observe, você pode passar um dicionário em [options](https://onnx.ai/sklearn-onnx/parameterized.html) no seu script de conversão. Nesse caso, passamos 'nocl' como True e 'zipmap' como False. Por ser um modelo de classificação, você tem a opção de remover o ZipMap, que produz uma lista de dicionários (não é necessário). `nocl` refere-se às informações de classe incluídas no modelo. Reduza o tamanho do seu modelo configurando `nocl` para 'True'.
Executando o _notebook_ inteiro agora irá construir um modelo Onnx e salvá-lo nesta pasta.
## Visualizando seu modelo
Os modelos Onnx não são muito visíveis no código do Visual Studio, mas existe um software livre muito bom que muitos pesquisadores usam para visualizar o modelo e garantir que ele seja construído corretamente. Baixe o programa [Netron](https://github.com/lutzroeder/Netron) e abra seu arquivo model.onnx com ele. Você pode ver seu modelo simples com suas 380 entradas e suas possíveis saídas:
![Visualização Netron](../images/netron.png)
Netron é uma ferramenta útil para visualizar seus modelos.
Estamos prontos para usar este modelo bacana em uma aplicação Web. Vamos construir uma aplicação que será útil pra quando você olhar em sua geladeira e tentar descobrir qual combinação de seus ingredientes você pode usar para cozinhar um prato de uma determinada culinária específica, conforme determinado por seu modelo.
## Criando uma aplicação Web de recomendação
Você pode usar seu modelo diretamente em uma aplicação Web. Essa arquitetura também permite executá-lo localmente e até mesmo offline, se necessário. Comece criando um arquivo `index.html` na mesma pasta onde você armazenou seu arquivo` model.onnx`.
1. No arquivo _index.html_, adicione o seguinte _markup_:
```html