{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "orig_nbformat": 2, "kernelspec": { "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", "display_name": "Python 3.7.0 64-bit ('3.7')" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "source": [ "# Nigerian Music scraped from Spotify - an analysis" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install seaborn" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " name album \\\n", "0 Sparky Mandy & The Jungle \n", "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", "2 LITT! LITT! \n", "3 Confident / Feeling Cool Enjoy Your Life \n", "4 wanted you rare. \n", "\n", " artist artist_top_genre release_date length popularity \\\n", "0 Cruel Santino alternative r&b 2019 144000 48 \n", "1 Odunsi (The Engine) afropop 2020 89488 30 \n", "2 AYLØ indie r&b 2018 207758 40 \n", "3 Lady Donli nigerian pop 2019 175135 14 \n", "4 Odunsi (The Engine) afropop 2018 152049 25 \n", "\n", " danceability acousticness energy instrumentalness liveness loudness \\\n", "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", "\n", " speechiness tempo time_signature \n", "0 0.0829 133.015 5 \n", "1 0.3600 129.993 3 \n", "2 0.0424 130.005 4 \n", "3 0.1130 111.087 4 \n", "4 0.0447 105.115 4 " ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
\n
" }, "metadata": {}, "execution_count": 82 } ], "source": [ "\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import seaborn as sns\n", "\n", "\n", "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Text(0.5, 1.0, 'Top genres')" ] }, "metadata": {}, "execution_count": 83 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", "df = df[(df['popularity'] > 0)]\n", "top = df['artist_top_genre'].value_counts()\n", "plt.figure(figsize=(10,7))\n", "sns.barplot(x=top.index,y=top.values)\n", "plt.xticks(rotation=45)\n", "plt.title('Top genres',color = 'blue')" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "ipykernel_launcher:12: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " artist_top_genre popularity danceability acousticness loudness \\\n", "1 1 30 0.710 0.0822 -5.640 \n", "3 2 14 0.894 0.7980 -4.961 \n", "4 1 25 0.702 0.1160 -6.044 \n", "5 2 26 0.803 0.1270 -10.034 \n", "6 2 29 0.818 0.4520 -9.840 \n", ".. ... ... ... ... ... \n", "514 0 20 0.838 0.0358 -3.723 \n", "515 0 14 0.786 0.1950 -4.232 \n", "519 1 2 0.879 0.2240 -4.602 \n", "522 0 26 0.863 0.0366 -3.130 \n", "525 0 10 0.735 0.6320 -2.582 \n", "\n", " energy \n", "1 0.683 \n", "3 0.611 \n", "4 0.833 \n", "5 0.525 \n", "6 0.587 \n", ".. ... \n", "514 0.931 \n", "515 0.806 \n", "519 0.916 \n", "522 0.896 \n", "525 0.918 \n", "\n", "[286 rows x 6 columns]\n" ] } ], "source": [ "from sklearn.cluster import KMeans\n", "wcss = []\n", "\n", "X = df[['artist_top_genre','popularity','danceability','acousticness','loudness','energy']]\n", "\n", "y = df['artist_top_genre']\n", "\n", "from sklearn.preprocessing import LabelEncoder\n", "\n", "le = LabelEncoder()\n", "\n", "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", "\n", "# X = le.transform(X)\n", "\n", "y = le.transform(y)\n", "\n", "print(X)\n", "\n", "for i in range(1, 11):\n", " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", " kmeans.fit(X)\n", " # inertia method returns wcss for that model\n", " wcss.append(kmeans.inertia_)" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" ] }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7hcZXn///e9c4IQOQQSUgImICcjVMANBkUp4SyHwGypeER/VmqLoijfVnvQVv212tqq1NaWaqsoX5ByCic5yLkokABKQCqkhJAgkEggIIeEJPf3j7W2mezs7EOyZ6+Z2e/Xdc01M89aM+temYvkw/Os9TyRmUiSJKl1dFRdgCRJkgbHACdJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJKaQkT8VUT8YBiOMz0iMiJGl+9viYg/aPRxh8NQnktEfDcivjQU3yVp6BngJA2LiPhN3WNtRLxc9/69Q3ys70bEqh7H/PlQHmNT1QXI+3q071DW/NgAv2dYAq+k5mSAkzQsMnNC9wN4HDihru38Bhzy7+qPmZlvbMAxNsf4iNin7v17gIVVFSOptRjgJDWTsRFxXkS8EBEPRkRn94aI2CkiLomIZRGxMCLOHMLjvi4i7o6I5yNiTkRMrDvuiWUtz5VDlK8v2z8UEVfW7fdIRPxX3fvFEbFfH8f8PnBa3fsPAOfV77Cxc46IY4A/A97VS+/itIi4o/wzvD4idujvXMpt+0fEveXnfghsMbA/OklVMMBJaiYnAhcC2wJXAN8EiIgO4Erg58BU4HDgkxFx9BAd9wPA/wf8DrAaOKc87p7ABcAngUnANcCVETEWuBV4W0R0RMROwFjg4PJzuwETgPv7OOYPgFMjYlREzCj3v6t7Y1/nnJnXAn8D/LCX3sX3AB8CJpc1nd3fuZTnczlFqJwI/BfQNag/QUnDygAnqZn8d2Zek5lrKMJEdzA5EJiUmV/IzFWZ+Sjw78CpfXzX2WVPU/fje33s+/3MfCAzXwT+Evj9iBgFvAu4OjNvyMxXga8CWwJvKWt4AdgPeDtwHfCriNgbOBS4PTPX9nHMJcAvgSMoAuT3e2zflHMG+M/MfDgzXwYuKuujr3MBZgJjgK9n5quZeTEwt5/jSKrQ6KoLkKQ6T9W9fgnYorxbdBqwU0Q8V7d9FHB7H9/11cz8iwEed3Hd60UUYWYHYKfyPQCZuTYiFlP0iEHRC/d7wO7l6+cowtvB5fv+nAd8kCJEvQ3Ys27bppwzbPhnOKF83de5rAGeyMys++wiJDUtA5ykVrAYWJiZezTo+3epe/1a4FXg18CvgH27N0RElPs+UTbdCpwA7EoxpPkc8F6KAPfNARz3knK/ezLz8XKYs1t/55wbad+Yvs4lgakREXUh7rXA/w7yGJKGiUOoklrB3cALEfGnEbFled3YPhFx4BB9//siYkZEjAe+AFxcDuNeBBwXEYdHxBjg08BK4Cfl524FDgO2zMwlFL1jxwDbA/f1PEhP5ZDtLKC3udv6O+engenltXID0de5/JTi2r8zI2JMRNSAgwb4vZIqYICT1PTKMHU8xfVcCyl6x74NbNPHx/6kxzxwv+5j3+8D36UYftwCOLM87i+B9wH/VB7zBIrpT1aV2x8GfkM5rJmZzwOPAneUNQ/k3OZl5gY9XQM45+47Xp+JiHsHcJyNnkt5PjWK4dzlFNfLXTqQ+iVVI9a/5EGSJEnNzh44SZKkFmOAkyRJajEGOEmSpBZjgJMkSWoxBjhJkqQWM+Im8t1hhx1y+vTpVZchSZLUr3vuuefXmTmpZ/uIC3DTp09n3rx5VZchSZLUr4jodVk7h1AlSZJajAFOkiSpxRjgJEmSWowBTpIkqcUY4CRJklqMAU6SJKnFGOAkSZJazIibB66h1q6FpUth5UoYNw4mT4YOM7IkSRpapouhsnYtzJ8PM2fC9OnF8/z5RbskSdIQMsANlaVLYfZsWFROmLxoUfF+6dJq65IkSW3HADdUVq5cF966LVpUtEuSJA0hA9xQGTcOpk1bv23atKJdkiRpCBnghsrkyTBnzroQN21a8X7y5GrrkiRJbce7UIdKRwfsuy/ceSc8+ii88krx3rtQJUnSEDNdDKWODpgyBa65Bo46CpYvr7oiSZLUhgxwjVCrwZo1cMUVVVciSZLakAGuEfbfv5gL7tJLq65EkiS1IQNcI0QUvXA33ADPP191NZIkqc0Y4BqlqwtWrYKrr666EkmS1GYMcI0yc2ZxQ4PDqJIkaYgZ4BqlowNOPrm4I/Wll6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcI7397TBxIlxySdWVSJKkNmKAa6QxY2D2bLjyyuKGBkmSpCFggGu0Wg1WrICbbqq6EkmS1CYMcI12xBHwmtd4N6okSRoyBrhG22ILOO44uPzyYnktSZKkzWSAGw61GixbBv/931VXIkmS2oABbjgce2zRE+cwqiRJGgIGuOEwYQIcfXQR4NaurboaSZLU4gxww6WrC5YsgXnzqq5EkiS1OAPccDn+eBg92kl9JUnSZjPADZfttoPDDy+GUTOrrkaSJLUwA9xwqtVgwQJ44IGqK5EkSS3MADecZs+GCIdRJUnSZjHADacdd4S3vc3pRCRJ0mYxwA23Wg3mz4dHHqm6EkmS1KIMcMOtViue7YWTJEmbqKEBLiLOiogHI+KBiLggIraIiF0j4q6IWBARP4yIseW+48r3C8rt0+u+57Nl+y8j4ui69mPKtgUR8ZlGnsuQ2WUXOPBAr4OTJEmbrGEBLiKmAmcCnZm5DzAKOBX4CvC1zNwdeBb4cPmRDwPPlu1fK/cjImaUn3sDcAzwLxExKiJGAf8MHAvMAN5d7tv8urpg7lx4/PGqK5EkSS2o0UOoo4EtI2I0MB54EpgFXFxu/x5wUvl6dvmecvvhERFl+4WZuTIzFwILgIPKx4LMfDQzVwEXlvs2v5NPLp4vv7zaOiRJUktqWIDLzCeArwKPUwS3FcA9wHOZubrcbQkwtXw9FVhcfnZ1uf/29e09PrOx9ua3556wzz4Oo0qSpE3SyCHU7Sh6xHYFdgK2ohgCHXYRcXpEzIuIecuWLauihA11dcHtt8PTT1ddiSRJajGNHEI9AliYmcsy81XgUuCtwLblkCrAzsAT5esngF0Ayu3bAM/Ut/f4zMbaN5CZ52ZmZ2Z2Tpo0aSjObfPVasWSWnPmVF2JJElqMY0McI8DMyNifHkt2+HAL4CbgXeW+5wGdCeYK8r3lNtvysws208t71LdFdgDuBuYC+xR3tU6luJGhysaeD5Da999YffdnU5EkiQNWiOvgbuL4maEe4H55bHOBf4U+FRELKC4xu075Ue+A2xftn8K+Ez5PQ8CF1GEv2uBMzJzTXmd3MeA64CHgIvKfVtDRNELd+ON8OyzVVcjSZJaSBSdXCNHZ2dnzps3r+oyCnffDW9+M5x3Hrz//VVXI0mSmkxE3JOZnT3bXYmhSp2dsPPODqNKkqRBMcBVqaOjmBPu2mvhN7+puhpJktQiDHBV6+qCV14pQpwkSdIAGOCqdsghMGmSk/pKkqQBM8BVbdQoOOkkuOqqoidOkiSpHwa4ZlCrFdfA/fjHVVciSZJagAGuGcyaBdts492okiRpQAxwzWDsWDjhhGJZrdWrq65GkiQ1OQNcs6jVYPlyuPXWqiuRJElNzgDXLI4+GsaPdxhVkiT1ywDXLMaPh2OPhcsug7Vrq65GkiQ1MQNcM+nqgiefhDvvrLoSSZLUxAxwzeS444obGpzUV5Ik9cEA10y23hqOPLK4Di6z6mokSVKTMsA1m1oNHnsMfvazqiuRJElNygDXbE48sVhey2FUSZK0EQa4ZrPDDnDooU4nIkmSNsoA14xqNXjooeIhSZLUgwGuGZ18cvFsL5wkSeqFAa4Z7bQTHHyw18FJkqReGeCaVVcX3HcfLFxYdSWSJKnJGOCaVfcw6mWXVVuHJElqOga4ZrXbbrDffg6jSpKkDRjgmllXF/zkJ8X6qJIkSSUDXDOr1Ypnh1ElSVIdA1wzmzED9t7b6UQkSdJ6DHDNrlaDW26BZ56puhJJktQkDHDNrqsL1qyBK66ouhJJktQkDHDNbv/9Ydo0h1ElSdJvGeCaXUQxjHr99fD881VXI0mSmoABrhV0dcGqVXDNNVVXIkmSmoABrhUcfDBMmeKkvpIkCTDAtYaOjmJprWuugZdfrroaSZJUMQNcq6jV4KWX4Lrrqq5EkiRVzADXKg49FCZO9G5USZJkgGsZY8bAiScW88GtWlV1NZIkqUIGuFZSq8GKFXDzzVVXIkmSKmSAayVHHgkTJjiMKknSCGeAayVbbAHHHQeXX14sryVJkkYkA1yr6eqCpUvhjjuqrkSSJFXEANdqjj226IlzUl9JkkYsA1yrmTABjj66uA4us+pqJElSBQxwrahWgyVLYO7cqiuRJEkVMMC1ohNOgNGjvRtVkqQRygDXirbbDmbNKq6DcxhVkqQRxwDXqmo1WLAAHnig6kokSdIwM8C1qpNOggiHUSVJGoEaGuAiYtuIuDgi/iciHoqIgyNiYkTcEBGPlM/blftGRJwTEQsi4v6IOKDue04r938kIk6ra39TRMwvP3NOREQjz6ep7LgjHHKI04lIkjQCNboH7hvAtZm5N/BG4CHgM8CNmbkHcGP5HuBYYI/ycTrwLYCImAh8HngzcBDw+e7QV+7zkbrPHdPg82kuXV0wfz488kjVlUiSpGHUsAAXEdsAbwe+A5CZqzLzOWA28L1yt+8BJ5WvZwPnZeFOYNuI+B3gaOCGzFyemc8CNwDHlNu2zsw7MzOB8+q+a2Q4+eTi2WFUSZJGlEb2wO0KLAP+MyLui4hvR8RWwI6Z+WS5z1PAjuXrqcDius8vKdv6al/SS/vI8drXwoEHGuAkSRphGhngRgMHAN/KzP2BF1k3XApA2XPW8HkwIuL0iJgXEfOWLVvW6MMNr1oN7r4bFi/uf19JktQWGhnglgBLMvOu8v3FFIHu6XL4k/J5abn9CWCXus/vXLb11b5zL+0byMxzM7MzMzsnTZq0WSfVdGq14vmyy6qtQ5IkDZuGBbjMfApYHBF7lU2HA78ArgC67yQ9DZhTvr4C+EB5N+pMYEU51HodcFREbFfevHAUcF257fmImFneffqBuu8aOfbcE/bZx2FUSZJGkNEN/v6PA+dHxFjgUeBDFKHxooj4MLAI+P1y32uAdwALgJfKfcnM5RHxRaB74c8vZOby8vUfA98FtgR+VD5GnloNvvQlWLoUJk+uuhpJktRgkSNsKabOzs6cN29e1WUMrfvvhze+Ec49Fz7ykaqrkSRJQyQi7snMzp7trsTQDvbdF173Oif1lSRphDDAtYOIYlLfG2+E556ruhpJktRgBrh2UavB6tVw1VVVVyJJkhrMANcuDjwQpk51GFWSpBHAANcuOjqKXrhrr4UXX6y6GkmS1EAGuHZSq8Err8CPRuZsKpIkjRQGuHbytrfBpElO6itJUpszwLWTUaNg9uziRoaVK6uuRpIkNYgBrt10dcELL8CPf1x1JZIkqUEMcO1m1izYemuHUSVJamMGuHYzdiyccALMmVPMCydJktqOAa4ddXXBM8/AbbdVXYkkSWoAA1w7OvpoGD/eSX0lSWpTBrh2NH48HHssXHYZrF1bdTWSJGmIGeDaVa0GTz4Jd95ZdSWSJGmIGeDa1fHHFzc0eDeqJEltxwDXrrbeGo44oghwmVVXI0mShpABrp3VarBwIfzsZ1VXIkmShpABrp3Nng0dHQ6jSpLUZvoMcBFxYERMqXv/gYiYExHnRMTExpenzbLDDnDooU4nIklSm+mvB+7fgFUAEfF24MvAecAK4NzGlqYh0dUFDz1UPCRJUlvoL8CNyszl5et3Aedm5iWZ+ZfA7o0tTUPipJOKZ4dRJUlqG/0GuIgYXb4+HLipbtvoXvZXs5k6FQ4+2AAnSVIb6S/AXQDcGhFzgJeB2wEiYneKYVS1gloN7r0XHnus6kokSdIQ6DPAZeb/D3wa+C5wSOZvJxTrAD7e2NI0ZGq14tleOEmS2kJ/d6GOB+7JzMsy88WI2CsizgL2ycx7h6dEbbbddoP99jPASZLUJvobQr0WmA6/HTb9KbAbcEZE/G1jS9OQqtXgJz8p1keVJEktrb8At11mPlK+Pg24IDM/DhwLHN/QyjS0urqKJbUuv7zqSiRJ0mbqL8DVL6I5C7gBIDNXAWsbVZQa4PWvh732clJfSZLaQH8B7v6I+Gp53dvuwPUAEbFtwyvT0IooeuFuuQWeeabqaiRJ0mboL8B9BPg1xXVwR2XmS2X7DOCrDaxLjVCrwZo1cOWVVVciSZI2Q38BbgJwZWZ+IjN/Xte+guIGB7WSAw6AadMcRpUkqcX1F+D+Cdi+l/aJwDeGvhw1VETRC3f99fDCC1VXI0mSNlF/AW73zLytZ2Nm3g78bmNKUkPVarBqFVx9ddWVSJKkTdRfgHtNH9vGDGUhGiZveQtMmeKkvpIktbD+AtyCiHhHz8aIOBZ4tDElqaE6OuCkk+Caa+Dll6uuRpIkbYLR/Wz/JHB1RPw+cE/Z1gkcjBP5tq6uLvjXfy2uhZs9u+pqJEnSIPXXA3cc8D7gDmBa+bgV+N3MfLjBtalRDj0UttvOYVRJklpUfz1wOwNfB14P3E8R5JYC44FXGluaGmbMGDjxRJgzp7ihYezYqiuSJEmD0GcPXGaenZlvAXYEPgssBz4EPBARvxiG+tQoXV3w3HPFygySJKml9DeE2m1LYGtgm/LxK+CuRhWlYXDkkTBhgpP6SpLUgvoMcBFxbkTcAfyQ4saFnwCnZGZnZn5oOApUg2yxBRx3HFx+ebG8liRJahn99cC9FhgHPAU8ASwBnmt0URomtRosXQp33FF1JZIkaRD6uwbuGOBA1i1c/2lgbkRcHxF/3eji1GDveAeMG+fdqJIktZh+r4HLwgPANcCPKO5EfR3wiQbXpkabMAGOProIcJlVVyNJkgaov2vgzoyICyPicYr5344H/geoUSxor1ZXq8HixTBvXtWVSJKkAepvHrjpwH8BZ2Xmk40vR8PuhBNg9OiiF+7AA6uuRpIkDUB/18B9KjMv2ZzwFhGjIuK+iLiqfL9rRNwVEQsi4ocRMbZsH1e+X1Bun173HZ8t238ZEUfXtR9Tti2IiM9sao0j2sSJcNhhxXQiDqNKktQSBjoP3Ob4BPBQ3fuvAF/LzN2BZ4EPl+0fBp4t279W7kdEzABOBd4AHAP8SxkKRwH/DBwLzADeXe6rwerqgkcegQcfrLoSSZI0AA0NcBGxM8V6qt8u3wcwC7i43OV7wEnl69nle8rth5f7zwYuzMyVmbkQWAAcVD4WZOajmbkKuLDcV4M1ezZEOKmvJEktotE9cF8H/gRYW77fHnguM1eX75cAU8vXU4HFAOX2FeX+v23v8ZmNtWuwpkyBQw5xOhFJklpEwwJcRBwPLM3Mexp1jEHUcnpEzIuIecuWLau6nOZUq8H998OCBVVXIkmS+tHIHri3AidGxGMUw5uzgG8A20ZE992vO1Os8ED5vAtAuX0b4Jn69h6f2Vj7BjLz3HL5r85JkyZt/pm1o5NPLp7thZMkqek1LMBl5mczc+fMnE5xE8JNmfle4GbgneVupwFzytdXlO8pt9+UmVm2n1repborsAdwNzAX2KO8q3VseYwrGnU+bW/aNOjsNMBJktQChuMu1J7+FPhURCyguMbtO2X7d4Dty/ZPAZ8ByMwHgYuAXwDXAmdk5pryOrmPAddR3OV6UbmvNlWtBnfdBUuWVF2JJEnqQ+QIm/urs7Mz57nqQO8efhj22gvOOQc+/vGqq5EkacSLiHsys7NnexU9cGpWe+4Jb3iD04lIktTkDHBaX1cX3H47LF1adSWSJGkjDHBaX60Ga9fCFd4PIklSszLAaX2/+7uw224Oo0qS1MQMcFpfRDGMeuON8NxzVVcjSZJ6YYDThmo1ePVVuOqqqiuRJEm9MMBpQwcdBFOnOqmvJElNygCnDXV0FEtrXXstvPhi1dVIkqQeDHDqXVcXvPxyEeIkSVJTMcCpd4ccAjvs4DCqJElNyACn3o0eDbNnFzcyrFxZdTWSJKmOAU4b19UFzz9fTCkiSZKahgFOGzdrFmy9tZP6SpLUZAxw2rhx4+CEE2DOHFi9uupqJElSyQCnvtVq8MwzcNttVVciSZJKBjj17ZhjYMstvRtVkqQmYoBT38aPh2OPhcsug7Vrq65GkiRhgNNA1Grwq1/BXXdVXYkkScIAp4E4/ngYM8ZhVEmSmoQBTv3bZhs44ohiOpHMqquRJGnEM8BpYLq6YOFC+PnPq65EkqQRzwCngTnxROjocFJfSZKagAFOAzNpEhx6qNfBSZLUBEZXXYBayEc/WtzMsGABTJgAkycXvXKSJGlY+a+vBmbtWthjDzjrrOJ55kyYP9+54SRJqoABTgOzdCmcfDIsWlS8X7QIZs8u2iVJ0rAywGlgVq5cF966LVpUtEuSpGFlgNPAjBsH06at3zZtmvPCSZJUAQOcBmbyZJgzZ12ImzYN/uM/4MMf9s5USZKGmQFOA9PRAfvuC3feCY89VjzvvTe88EIxye/ZZ8Orr1ZdpSRJI4IBTgPX0QFTphS9b1OmwE47we23wxlnwD/8A8yaVSx6L0mSGsoAp80zbhx885tw/vlw772w//5w881VVyVJUlszwGlovOc9MHcuTJxYLHz/t3/rHHGSJDWIAU5DZ8YMuPtuOOUU+LM/K+aJe/bZqquSJKntGOA0tF7zGrjgAvinf4LrroM3vakYWpUkSUPGAKehFwEf+xjcdhusXg1veQuce65zxkmSNEQMcGqcmTOL3rdDD4U//EP44AfhpZeqrkqSpJZngFNj7bADXHMNfP7z8P3vF6Hu4YerrkqSpJZmgFPjjRoFf/VX8KMfFfPEdXbCJZdUXZUkSS3LAKfhc/TRxZDqjBnwznfCpz7l6g2SJG0CA5yG12tfW9zc8LGPwde+BocdBk88UXVVkiS1FAOcht/YscU0IxdcAD/7GRxwANx0U9VVSZLUMgxwqs6ppxarN2y/PRx5JPzN37h6gyRJA2CAU7Ve//pi9YZ3vQv+/M/hxBNh+fKqq5IkqakZ4FS9CRPg/PPhm9+E668vVm+YN6/qqiRJaloGODWHCDjjDLj9dlizBt76Vvi3f3P1BkmSemGAU3N585vhvvtg1iz46EfhtNPgxRerrkqSpKbSsAAXEbtExM0R8YuIeDAiPlG2T4yIGyLikfJ5u7I9IuKciFgQEfdHxAF133Vauf8jEXFaXfubImJ++ZlzIiIadT4aRttvD1dfDX/91/CDHxSrN/zyl1VXJUlS02hkD9xq4NOZOQOYCZwRETOAzwA3ZuYewI3le4BjgT3Kx+nAt6AIfMDngTcDBwGf7w595T4fqfvcMQ08Hw2njg743Ofg2mvhySfhwAPh4ourrkqSpKbQsACXmU9m5r3l6xeAh4CpwGzge+Vu3wNOKl/PBs7Lwp3AthHxO8DRwA2ZuTwznwVuAI4pt22dmXdmZgLn1X2X2sVRRxVDqm94A5xyCpx1lqs3SJJGvGG5Bi4ipgP7A3cBO2bmk+Wmp4Ady9dTgcV1H1tStvXVvqSX9t6Of3pEzIuIecuWLdusc1EFdtkFbr0VzjwTvv51+L3fgyVL+v2YJEntquEBLiImAJcAn8zM5+u3lT1nDb/NMDPPzczOzOycNGlSow+nRhg7Fr7xDbjwQrj//mL1hh//uOqqJEmqREMDXESMoQhv52fmpWXz0+XwJ+Xz0rL9CWCXuo/vXLb11b5zL+1qZ+96V7F6w6RJxfDql77k6g2SpBGnkXehBvAd4KHM/Me6TVcA3XeSngbMqWv/QHk36kxgRTnUeh1wVERsV968cBRwXbnt+YiYWR7rA3XfpXa2995w113w7nfDX/4lnHCCqzdIkkaURvbAvRV4PzArIn5WPt4BfBk4MiIeAY4o3wNcAzwKLAD+HfhjgMxcDnwRmFs+vlC2Ue7z7fIz/wv8qIHno2YyYUIxxci//EsxlHrAAa7eIEkaMSJH2Ez3nZ2dOc9/6NvL3LnwznfCU08VNzl89KPFyg6SJLW4iLgnMzt7trsSg1rfgQfCvffC4YfDH/8xvP/9rt4gSWprBji1h+23h6uugi9+Ef7v/y2W5HL1BklSmzLAqX10dMBf/AVcfz08/TR0dsJFF1VdlSRJQ84Ap/ZzxBHF6g377ltMO/KJT8CqVVVXJUnSkDHAqT3tvDPccksR3s45x9UbJEltxQCn9jV2bHFX6kUXwfz5sP/+cMMNVVclSdJmM8Cp/Z1ySjFH3I47wtFHFzc6uHqDJKmFGeA0Muy1V7F6w3vfC5/7HBx3HDzzTNVVSZK0SQxwGjm22grOOw++9S246aZi9Ya77666KkmSBs0Ap5Elolip4Y47iteHHFIsxzXCViSRJLU2A5xGps7OYvWGI4+EM86A970PfvObqquSJGlADHAauSZOhCuvhC99CS68sFi94dFHizVVFy0qnr3ZQZLUhAxwGtk6OuDP/7xYvWGXXeCxx2DmTJg+vXieP98QJ0lqOqOrLkBqCocfDnvsAW9/e9H7BsXz7Nlw441FoBs1qtISJUnqZoCTumWuC2/dFi0qVnB44xvhoIPg4IOLx8yZsMMO1dQpSRrxDHBSt3HjYNq09UPctGmw/fbwwQ/CT38KX/kKrFlTbNtjj3WB7uCDYZ997KWTJA2LyBE2fUJnZ2fOmzev6jLUjNauLa55mz27CHHTpsGcObDvvsW1cgAvvlis6vDTn657LFtWbNtqK3vpJElDKiLuyczODdoNcFKdtWth6VJYubLokZs8eV14600mLFy4fqD7+c/tpZMkDQkDXMkAp4azl06SNEQ2FuC8Bk4aalttBYceWjyg9146r6WTJG0Ge+CkKtT30t15Z/G8dGmxzV46SVLJHjipmWxOL93MmUUv3Wj/85WkkcoeOKlZ2UsnSSOePXBSq2lEL91g77KVJDUle+CkVjaYXrq3vAUWL+57njtJUlNxGpGSAU5tra956S69FKt0/IQAAAyPSURBVM46a8OVJu64A6ZOra5mSdJGOYQqjQQRsNtuxeO97y3aunvpttuu97VeFywo1nrdddd1j912W/d62jQYO3b4z0WStFEGOKnddV9L99RTva/1OmECvPOd8OijcN99cPnl8Oqr6/aJKHroega77sdOOzkEK0nDzAAnjRSTJxfXvPV2Ddy//uu6/dasgV/9qhiKXbiwCHbdr3/842Jb/aUXY8fC9OkbBrvux8SJRQiUJA0Zr4GTRpKhuAt15coiANYHu/rH8uXr77/11r0Hu912K4Lf+PFDdnqS1G68Bk5SEdamTNm87xg3Dvbcs3j0ZsWK3oPdL38J110HL7+8/v477rjx6+922cUJiyWpF/7NKGlobbMN7Ldf8egpE55+ev1g192T99OfwkUXrZvXDoo1YXfZpfdwt+uuRfirH551njtJI4QBTtLwiSh6AKdMKeam6+nVV2HJkg2vvVu4EK6+ugh/9bbcct31d4cdBoccAqeeuu4av8svL67xGzVqWE5PkoaLAU5S8xgzZl3v2qxZG25/6SV47LHer7/bc8914Q2K55NOgq9/HT760eJmisE8tt7a3jtJTcsAJ6l1jB8PM2YUj54WLep9nrvp0+HEE4ubK5Yvh8cfLyY3Xr4cfvObjR+rowO23XbwwW+77bxuT1LD+beMpPYwblzv89xNmQLnntv7Z1atgmefXRfu+nr8+tfw8MPF6+ee67uWrbfetOC3xRb9n6fX+UnCACepXWxsnrvJkzf+mbFjixshdtxxcMdas6YIcX0FvvpguHjxutf1N2n0NH78+oGuZ8jbc8/ipo5TTll3jpdeWoTUUaOKQLfFFsVzq869Z0CVBsQAJ6k9dHQUNyzceWfj//EfNQq23754DEYmvPDCwHr8li9f1+P3zDNFb+Gll64Lb1A812rwta8Vz/W6w1z9o7e2wWwfzHdsyjDy2rUwf37vk00b4qT1OJGvJDW7zGL+vCefhN1333D7Aw/AbbfBK69s+Fi5svf2/rZvrlGjBh8A/+AP4N3v3nAY/PLLYe7cosd07NjiO7pf93y/sW1jxjRHCLSHUYPkRL6S1KoiiuHVrbbq/Tq/7beHP/qjoTteZtHjtzkBcCDbV6xYf/sHP9j7jSgrVsDpp2/+eY0ZM/jgN9h9+9q27bbFndS12roexssuK+Y3HDWq6LXsDpqtOgQO7R9Sm+T8DHCS1Co25Tq/TRFR/MM0btzQfm9/nnqq94C6227F/IArVxbBsvtR/76vbYPZd+XKordzxYq+P7dy5fprAg/EpZfCWWetPwR+8sm9D4GPGbMu0NW/7vk80LZGbOutbautius/60Pq5ZcXv2FHR7Hf6NFFYG3FkNpEw/wOoUpSK2mS//tviCb6x3FAVq8eXEicPr33KXDuv79YZu7VV4vvfPXV9V/3fB7stv72H8oc0DOkQvE79hZSuwNdd+/j5rweiu8YyOv99oPjj9/w/O68c/OXKdwIh1AlqR0MxXq2zWo4b0QZCt3/uI8fP7D9N9bDOGkSnH12Y2ociLVrhy4o7rVX78Pgu+8Of/d3xV3Yq1cXj6F6vWrVpn22/nmgbrml9/NbuXKzf4bBMsBJkppHOwfU4RoCH6yOjqEbMu8rpP6f/7P5398ImUWIHUjwGzWq9/Mb7ssNMMBJkjQ8Wq2HcVM0a0jtS0QRzLrnUuzL2rVNc34GOEmShks79zBC+4fUJjq/lg9wEXEM8A1gFPDtzPxyxSVJkjRyjYSQ2gTn19KROCJGAf8MHAvMAN4dEb3c4iNJktQ+WjrAAQcBCzLz0cxcBVwIzK64JkmSpIZq9QA3FVhc935J2SZJktS2Wj3ADUhEnB4R8yJi3rJly6ouR5IkabO0eoB7Atil7v3OZdt6MvPczOzMzM5JkyYNW3GSJEmN0OoBbi6wR0TsGhFjgVOBKyquSZIkqaFaehqRzFwdER8DrqOYRuQ/MvPBisuSJElqqJYOcACZeQ1wTdV1SJIkDZfIzKprGFYRsQxY1O+O6ssOwK+rLkKbxd+w9fkbtjZ/v9Y3XL/htMzc4AL+ERfgtPkiYl5mdlZdhzadv2Hr8zdsbf5+ra/q37DVb2KQJEkacQxwkiRJLcYAp01xbtUFaLP5G7Y+f8PW5u/X+ir9Db0GTpIkqcXYAydJktRiDHAasIjYJSJujohfRMSDEfGJqmvS4EXEqIi4LyKuqroWDV5EbBsRF0fE/0TEQxFxcNU1aXAi4qzy79AHIuKCiNii6prUt4j4j4hYGhEP1LVNjIgbIuKR8nm74azJAKfBWA18OjNnADOBMyJiRsU1afA+ATxUdRHaZN8Ars3MvYE34m/ZUiJiKnAm0JmZ+1CsInRqtVVpAL4LHNOj7TPAjZm5B3Bj+X7YGOA0YJn5ZGbeW75+geIfjqnVVqXBiIidgeOAb1ddiwYvIrYB3g58ByAzV2Xmc9VWpU0wGtgyIkYD44FfVVyP+pGZtwHLezTPBr5Xvv4ecNJw1mSA0yaJiOnA/sBd1VaiQfo68CfA2qoL0SbZFVgG/Gc5DP7tiNiq6qI0cJn5BPBV4HHgSWBFZl5fbVXaRDtm5pPl66eAHYfz4AY4DVpETAAuAT6Zmc9XXY8GJiKOB5Zm5j1V16JNNho4APhWZu4PvMgwD9to85TXSc2mCOM7AVtFxPuqrUqbK4spPYZ1Wg8DnAYlIsZQhLfzM/PSquvRoLwVODEiHgMuBGZFxA+qLUmDtARYkpndPd8XUwQ6tY4jgIWZuSwzXwUuBd5ScU3aNE9HxO8AlM9Lh/PgBjgNWEQExbU3D2XmP1ZdjwYnMz+bmTtn5nSKi6Zvykz/z7+FZOZTwOKI2KtsOhz4RYUlafAeB2ZGxPjy79TD8UaUVnUFcFr5+jRgznAe3ACnwXgr8H6KnpuflY93VF2UNMJ8HDg/Iu4H9gP+puJ6NAhl7+nFwL3AfIp/h12VoclFxAXAT4G9ImJJRHwY+DJwZEQ8QtGz+uVhrcmVGCRJklqLPXCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACepaURERsQ/1L0/OyL+aoi++7sR8c6h+K5+jnNKRDwUETc3sq6ImB4R7xl8hZLagQFOUjNZCdQiYoeqC6lXLjo+UB8GPpKZhzWqntJ0YFABbpDnIamJGeAkNZPVFJOantVzQ8+eqoj4Tfn8exFxa0TMiYhHI+LLEfHeiLg7IuZHxOvqvuaIiJgXEQ+Xa8MSEaMi4u8jYm5E3B8Rf1j3vbdHxBX0stpBRLy7/P4HIuIrZdvngEOA70TE3/fymT8tP/PziNhg0s+IeKw7vEZEZ0TcUr4+tG7y7Psi4jUUk4a+rWw7a6DnERFbRcTVZQ0PRMS7BvLDSGou/t+YpGbzz8D9EfF3g/jMG4HXA8uBR4FvZ+ZBEfEJipULPlnuNx04CHgdcHNE7A58AFiRmQdGxDjgjoi4vtz/AGCfzFxYf7CI2An4CvAm4Fng+og4KTO/EBGzgLMzc16PzxxLsYj5mzPzpYiYOIjzOxs4IzPviIgJwCsUi9ifnZndQfT0gZxHRHQBv8rM48rPbTOIOiQ1CXvgJDWVzHweOA84cxAfm5uZT2bmSuB/ge7gMp8itHW7KDPXZuYjFEFvb+Ao4AMR8TPgLmB7YI9y/7t7hrfSgcAt5YLkq4Hzgbf3U+MRwH9m5kvleS4fxPndAfxjRJwJbFses6eBnsd8iuV/vhIRb8vMFYOoQ1KTMMBJakZfp7iWbKu6ttWUf2dFRAcwtm7byrrXa+ver2X9kYaeawcmEMDHM3O/8rFrZnYHwBc36ywG77fnCGzx2yIzvwz8AbAlRc/a3r18dkDnkZkPU/TIzQe+VA77SmoxBjhJTafsnbqIIsR1e4xiyBLgRGDMJnz1KRHRUV4XtxvwS+A64I8iYgxAROwZEVv19SXA3cChEbFDRIwC3g3c2s9nbgA+FBHjy+P0NoT6GOvOsau7MSJel5nzM/MrwFyKnsMXgNfUfXZA51EO/76UmT8A/p4izElqMV4DJ6lZ/QPwsbr3/w7MiYifA9eyab1jj1OEr62Bj2bmKxHxbYph1nsjIoBlwEl9fUlmPhkRnwFupuj5ujoz5/TzmWsjYj9gXkSsAq4B/qzHbn9NcQPEF4Fb6to/GRGHUfQoPgj8qHy9pvzz+C7wjQGex77A30fEWuBV4I/6qltSc4rMniMKkiRJamYOoUqSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLUYA5wkSVKL+X89JllQdXJBKAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "plt.figure(figsize=(10,5))\n", "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", "plt.title('The Elbow Method')\n", "plt.xlabel('Number of clusters')\n", "plt.ylabel('WCSS')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3xTVRvHv+dmpwNayhJZIgoKDlygghMngrj3QMWtuNeruAduRQQF3AMFBwKKiiiIgCKiyHIhyobuptn3ef84aTpy06alFcF8P5/389rk5tyTkDznnGf8HiUipEmTJk2abR9ja08gTZo0adI0DmmDniZNmjTbCWmDniZNmjTbCWmDniZNmjTbCWmDniZNmjTbCWmDniZNmjTbCXUadKXUeKXURqXUz0meV0qpZ5RSvymlflJK9Wr8aaZJkyZNmrpIZYf+MnBMLc8fC3SN/W8o8PyWTytNmjRp0tSXOg26iMwCCmq5ZBDwqmjmAc2VUm0ba4Jp0qRJkyY17I0wRjvg7yp/r449tq62F+Xl5UmnTp0a4fZp0qRJ89/h+++/3ywiLa2eawyDnjJKqaFotwwdOnRgwYIF/+Tt06RJk2abRym1KtlzjZHlsgZoX+XvHWOPJSAiL4jIviKyb8uWlgtMmjRp0qRpII1h0CcD58WyXXoDxSJSq7slTZo0adI0PnW6XJRSbwGHAnlKqdXAcMABICKjgWnAccBvQDlwYVNNNk2aNGnSJKdOgy4iZ9bxvABXNtqM0qRJkyZNg0hXiqZJkybNdkLaoKdJkybNdkLaoKdJkybNdkLaoKdJkybNdsI/WliUJk2a/xYS+RuCn+s/XP1R9h237oS2c9IGPU2aNE2C6XsFSh8DYo3oS59Asm7CyDhvq85reybtckmTJk2jI5G/YsY8CIRi/wtC6aN6156mSUgb9DRp0jQ+wc8A0+IJE4Kf/tOz+c+QdrmkSRNDohuQ8jchsgzsPVHes1C2Flt7WtsosrUn8J8kvUNPs80gIohY7foaYezwcmTzseAbB8EvwfcCsvloJLKySe633ePqj7V5MWLPpWkK0ga9gaz7YwMrF68iGo1u7als94hZill0C7KhB7JhN8z8c5DIH417j5LhIGVoXy9AEKQUKXmgUe/zX0HZO0LmMMCFdgTY9X9nDkPZO9RrLBETCf+CRJKqxqaJkXa51JP1f25k+OARrPllHYbNwOF2cPPLV3HAcelWqk2BiCAFF0BkORDWD4a/Q/JPg5afoozcRrhHFMKLrJ6B0LwtHv+/ipF5EeI+AgIxn7n7KJS9U73GkOA3SPGNIOUgJmLbEZXzHMreufEnvB2gtLbWP8++++4r21qDC9M0OW/nq9j012ZMs/Jzc3mdjP7hMXbsunU7761buYHPX5tFWZGPA47rxd5H9EQptVXntKVIaBFSeD6Iv8Yzbsi8CiNz6JbfQwTZ0JPK3XkVVDZG63/H91TERKn/zqFaouuQTccAVf/tFRh5qJZfopRja01tq6KU+l5E9rV67r/z7WgEFs9aRkl+aTVjDhAJR5kyZutG7r965xsu6XE9bz44ifeemsrwwSMYPnhEk7iEfMU+flu0ktLCskYfO4HoH4DVohSAyIpGuYVSCjyDAGeNZ1zgOaVR7rElmOUfYG7sh2zohrnxYMzySVt7Sv8IUj4RiNR8VO/Wg19vjSn960m7XOpBwfoiy8ej4SgbV23+h2dTid8X4NEhowj6K3eYAV+QH2YsZs7739LvlD6Nch/TNHnhptf46Pnp2J12IqEIR5zTj2tHXYLNbmuUe1QgZgEEv0HMQrAMhLrBvnuj3U9l3a5zp8M/grKDRMC5Pyrruka7R0Mwyz+EkruAQOyBjVByLyZgeE/emlNresz1xN1sVRETzK33e/s3kzbo9WC3PrsQCSfueN0ZLvY9eq+tMCPN4lnLsNkTD1sBX5AZb8xuNIM+6YkpTBnzGaFAmFBA/9C+eGM22bmZXPzwOY1yDwDT9yqUjgAcsc15CP1VrditGaA8qEY0aMrIQLV4DQn/AtGVYN8ZZe9ieW2Fm/IfcWf5niJuzOP4oexp2M4NunL2QfxT0X1zqmKCMx2zsiLtcqkHrTu25Jghh+POcMUfc7od5O3YgiPOPnirzcvuSL47drgbz8848YmPCJYHqz0W9IeYPGo6jRWLkfCyWIVhCPCB+KgsUMkAnOA6FNViEspo1ij3rIpy7IJyH21pzCWyGrPgImTDbsiGHphFNyCm9amt0Ygm6eZorm+0z/xfi/sosHdAZ8pU4AH3MUkX2/866R16Pbn62YvYvc+ufPjcx/hLA/Q7tQ8nDTsel8dV94ubiJ79umPYEtdmd4aLYy48vNHuk8xnHvAFMKNmo7hdxP8e1sFJF6rZwyj30Vt8j4YgZhmSfwpIEXqBiULgEySyHFp81HTBStuOEP0r8XFjh60S8BYJglkGRk6TB2iVckLu20j5axD4CHChvGeD58Qmve+2TNqg1xOlFEec3Zcjzu67tacSx+F0cO8Ht3DHgAdBIBo1QYTjhx7JPv33aLT77LJPF5Z8kxiIbN+tXeP50KUc65JxLDJd/jnEPzl2/6pzC0N0LYTmg6tx3FoJZN4AxbdQ3e3ihszrG/U2IgLhBUjgC1AZKM/AavniIiGk5H7wvw8IGM2QrDsxPMc06jxqogwvKvNSyLy0Se+zvZCSQVdKHQM8DdiAsSLycI3nOwLjgZZAAXCOiKxu5LmmqYWefbszYc0LzJ28AF9xOb3670G7nRs3jfLyJy/gxsPuJhQIYZqCUgqnx8FVz17UaPdQ7qOQwNSYYa+CRMB5UKPdp95EfqF6+lwMicYycZrGoBueY/USUvY4RNeArR1kXofhOb7R7iEiSPHNWmNF/IAd8Y1Bsu/D8OrdsBT/DwKfoMW2AHMTFN+M2HJRzv0bbS5ptow689CVUjbgF6A/sBr4DjhTRJZWueZdYIqIvKKUOhy4UETOrW3cbTEPvakQET4a/SkTH59MSX4ZPft25+JHzqFj93+fdvSfS/7mjQcm8dvCP+i4e3vOvuNkuvbaqdHGFzGRoqshNCdm1BXggqxrMTIab+FIfv8ISAmobJSq3O+YvglQ+hAJATrlRTUfg3Id0ORzayokOAspuiZxEcWFajUHEGTjQVi6wpwHYeS+9A/MMk0FteWhp7JD3x/4TUT+iA32NjAIWFrlmt2AijPgTOCDhk/334GIJPVRrlu5gS/enE15iZ/eA/alx8Hdtsif+eItr/HRqE8JxAKO86d+z49fLWXMokdp27l1g8dtCjrt3p473hzWZOMrZSAZl0F4aWy3qMDRHeUe1KDxavt3lMB0xDcWzAJw9AUjA/xvgoRBuZDMq1DeC1BKoTwDEN/TYAaodLs4wNYJtvEdqvgtTkSg0zdDc8C2MygHiIVBt/Lvp9lqpGLQ2wFVBYxXAzW3Iz8CJ6HdMoOBLKVUCxHJr3qRUmooMBSgQ4f66Tn8UyyevYznrh3PHz+uIqO5l5OvG8CZtw3GZtM+4hlvzuaJS0ZjRqJEwlEmj5pOz367kZ2bydrf17Pnobtz0rXHk9O6eUr3Ky0s48ORn8TTAAFEIOQPMuGRDxk2essrIetD0aZi5rz/LeFghAMG9GqUBWXRzJ95/5lpFG0q4aAT92fApf3xZnniz4tZgPhehdA3YLSMFY1UuDcEwouRgnMg7+OUF04JL0NK7oXwQkR5wHMaKutGHWgDzLKRUPZi5X2ib1FNIVBCUPYUojJQ3tNQRga0mISU3AfBWaBs4B6Ayrp1m6/GRdnRJyGr07od7O2T1AIY4Nh66bppEknF5XIKcIyIXBz7+1zgABG5qso1OwAjgc7ALOBkoIeIJM3pagyXS2lhGR+P+4Ll83+lU4/2HD+0Py3a5jR4vN9+WMmwvndWS81zeV0ce9HhXPn0EHzFPk7fYWi1Ap4KlKEQU3C47HgyPTy/cASt2ufVec9l83/ltmPux1ecuEPaaY+OjFn0WEpzj0aivPv4R3z0/HT8pX72PWYvLn7obFp1aJnS6wFmTZzLI+ePxFAK09Q/4LPuOJmz76hfvnN5qZ/vP/sJpeDv5Wt444H34p+p0+OkVfsWjFrwCJ5MDxLdiOQPArMUyyN9BSoDlTMmJX+tRNcgm4+vset0gasvRs4oxCxFNh5I3B9cG0ZbjFZf1X3dNoyEFiAFF5EQI1BeVKu5KOXBLBsNvuerBKaVrgVoMSmdQvgPs6UulzVA+yp/7xh7LI6IrEXv0FFKZQIn12bMG4ONf23i0r1vory4HNMUvn5/Pu88+iFPz3mALnt2atCYr9/3LiF/jTzr8iDTXvycC+49nYUzfsbmsFnHxmJyAOFghGjExyt3TeCml66s856tOuRV251XoJRix11SD2o+cv5I5nwwn5Bfj/XlhG/4/rOfGL/0KZrlZdf5+pKCUh45fyShGovVWw++xwHH9WLnvVMTQ5o1cS4jLhiJzW5DRPCXVi+KCflDbPw7n6kvfM4p15+AlI0Cs5jEEu+aCERWp+TeEN8rFu6BIARn62455gZQTpAUDHo9KxIlOA/xjYbo3+Dohcq8st6CVP80yrkvknEB+Majd+oGIKjmI1FKn6RUxqVg2wEpe15/Js5ekHk1hH/GLJ+oxbLcx+uTTJqtRiqJpN8BXZVSnZU+r54BTK56gVIqT1Umpd6GznhpUh69aBRlhb64roqYQrA8xH2nPd7gMVf+/DdWBxa7087GvzZbVmNaYUZNFnz6Y0rXtmibwwHH98JZowDI6XFwxq2D438vnfcLV+5/K0fZT2Nw7gW8cvcEohFdtbpu5Qa+njQvbsxBfx6+Ih9TX/gspXnMn7IQm0UuezgYZsabs1MaY/OafB45fyTB8hDlJf4EY15ByB9i7kex01lwFnUbc/SR39E9pXkQXmo9pnLqKlCjlfaTp4I99YCv6Z+CFA7VrqPo3xD4CMkfjER+S3mMrYWRdR0qbyoq62ZU9l2oVl+jXAcj0bVIZKUOVkfXgpkPUqoX18KhWna4fBxS8gCy6Qgtn1ALYvoQ/4eI7xUk3DhaPGkqqdNCiUgEuAqYDiwD3hGRJUqpe5VSA2OXHQqsUEr9ArQGmlxE+qeZSywfX/PrekKBWo7utdC5ZwdLf2gkFKFVx5b0OnKP+E68LrJyU9+p3Pra1Rxxdj8cbgd2h402nVoxfOKN8eyRVUv/5uYj7+WXBb8jplBW5OPdxybz9BUvAvD7olWWkgTRiMn8qQtTmkM0alpWHooQXzjq4qt35qb0+SgFOW1iMYaUqj3dWlclVYPu2A3Lw6eEwNZZ51c7egB1VdG6UVm3pnRLkSiU3E/1fHETpBwpfSq1eW9llL0DKuMclPckMAsxNw9CNh2NbD4RNu0DZSMrC6uiv+qdetyt5QcpQkr+l3R8CS1CNvVFiocjpY8i+adiFt+6/Ve8/oOktOUUkWkisouIdBGRB2KP3SUik2P/PVFEusauuVgklbPsllFT8bAqoWCKu68anHPnKTg91RX3XF4Xxw/tT0a2F7fXxV0Tb8TpceL0OLE7bShDYdhUwmtOue6ElO/r8ri4/sXL+LDoFd5ZP5ZXfx/JfsfsHX/+rYc/IFxjkQqWh5jx+iyKN5dQXlKe9EfhK7HIXrDggOP2xowmBr6cHieHnHpgSmMEfMGUjL/T4+TEq44FQGVcBHhqXGEHozWoHDDaQOZQVM6olOagx7wAVM3KXRe4+qHs2nuockaB8wDACcoLqhl4LwF7T1DZ4NgblfMiypVi7ru5OSZTUBOB8Pcpzz3+qshvSHA+YpbW+7VbikgEKTg7pmYZRBvrcmqNcQBgQuhbxCIbRiSKFF0eayJSMVYA/B9DcHpjv4VGR6LrMYuHY27qj5l/FhKYubWnZMk2q+Xiza5pBDSGzcCT6W7QmDvv1ZmHP7mDnXt1RhmK7BZZnHX7SVz2xPnxa1q2b0HzVtmIKRiGgcPlYMdd2uHyOMlo5sXpdnDC5Udx9IWH1fv+DqeDrJzMhFPC74tWWi5gDpeDdX9sICs3M2FRqaB5y9T0TnJaN+fypy7E6XFic+iFyuV10f+8fmxenc/7z0xjxYLfax1jv2P3wuFK3PUqBS6PE2+2B5fXxaWPnUePg7rpJ93HQ8b5gAtUFuAGxx6ovI8wWs/HaDULI/OqeHZKKijbDqjct8CxH1rIKwO8Z6OaP1l5jdEcI3e81tVuMQnVai5G9k0YeZMwWi/AaDGhfrnlKoukfTSNuoPjFUh0M+bmk5DNJyFFVyAbD8QsG5P6PBqD0Ncxw9uQdn8VPvgahBeDWLng/Ej5Ow24zz+HRDcgmweC/12IrtIVtUXDMH0vb+2pJbDNlv6ff+8ZjLn+5WqGTinFCZcdFU8xTIXCjcV8PG4GK39axS77duGYIYfz/IIRltdGo1FuPvJeCtcXVvO1b/hzI3dNvAGn20nnnh1SCkLWh5327MRfS1cnGPVQIEzbnVrTdqfW2Ox2zGj1k4nT7eDQ01OvrhwwtD97H96DmW/PIRwI03mPjjx71VhmvDGbSCiKYTPodWRPhk+80bLUf5d9urBzr84s+Xp5tcf3OqwHlz1xAaUFZeyyXxc8GZULrlIKlXU9kjEEwsvB1rpxutEYWWBrDZFsMDLB1garr7uy5QGpG9xkKMOLeE4A/xSqZ894UBmXxf+S6Hqk9PFY6qNHLzQZF8aLmKToylh3pkilAfSNQuy7oNz13yQ0iOjGJGmKdWHXpyBlZVYiWOvao6uA/8WI74XYAld1nn4ofRLxnh4PHP8b2GYN+uCrj6V4UzHvPv4RCu2COer8Q6rtpuvizyV/M+zg/xEOajnYuZMXMOGRDxj57cO06dQq4fofZy4hUBZICJyGQxG++3gRVz4zZAvflTVn3jqYOe9/WyOd0snhZx4cXzzO/t/JvP3w+wR8+hqXx0nbLm3of16/pOOKCMvm/cL8aQvxZnk47IyDaLdzW8753ymICEN2G0Zpfmm197vw88VMfeFzBl6RKJK1buUGfrXYxS/5ZgVZuZnstEdH63lE1+jsidB8sO0AGUNTd3VYjrcZ2TxYV3xiQrRI//giv6KaNV14R2Xfrd0Ngem6EAcTMq5Cxcr0xSxC8geDWQREQQqh7FkksgzV/Akksto6oCt+pPylRjfoYhZBeAXY2lbv8+nYm6SnjWrEqngx9fs1clHZ91lf6tgDa4eAB+X9l4ttBediHWS3QeT3WDzm38E234LO7wuw4c9N5LXLJbN5/VKmhh38P5bOXVHNYBk2gz4D9+XuSTclXP/lhDk8fvHzcaNZFYfLQTQSpeNuO3LZExfQ64ie9X4vtbF03i88d804fl24koxsL4OuPoZz7zy12k75+89+5MORn1BaWEa/U3pz7MVH4vZaq0CKCI9e+ByzJ84j4A9id9gxbAY3v3Qlh5x2IGt/X8/QPW8gWJ7oD+2yVydGL3w04fF3Hv2Ql+58m0io+pff6XZw8cPnMPia4xLnEfkbyT8x5qOt8L+7IfsuDG/DugWZpU+BbyyJPl8nquUMlE0XS0loIVL+KkQ3getwlPd0lJFZ69giojNYlBNla2N9jVmkx7S3R6nK04hZNgbKniNR39yFypsGUoIUnBvbDdbA1hWj5VQ9fvgnLZQVXgwqE7znojKvSLIztn4PUvoYlL8aS98Mg2NPVM4olJGl51o4DIIzqczRdel7SQQoAXs3yLoNRVTr3Ng6gatvrXOQ4Cyk8Gr0v3NIxy4c++j6ghTnvjUwC4ZoN1QCTlTLz5N+D5qKLc1D/1cRCUcIlgfxZntRSuHJcNNp9/Z1v7AG0UiUpfN+Sdhtm1GTBZ9YNQyG3Q7cxdKYg07vA1i5+C/uGvQwj3x6F7sfuGu1a8pL/diddpwWfua62K33Ljz37SO1XrNP/z3Zp/+eKY333SeLmD1pXlxuoMIIPzrkOfY7dm8i4WjSCkirjJqKx62yXExTkr5GfCNraJ4DBKD0IcQzKGnfSK0O+IPOKbf3iAc7AQgtIJkEL5EVYGuNWT4BSh7U96qoRvW/CS0+iBu1hHuGfkCKrtepewhi3wnV/Bnd4b7qbYzmYFhUCocWkGjM0bvbyDJwHYr1ztgJbi2DLJE/YkY/ZmilGHxjEXM9qtmDlvNOIPABlL8OBCtz8cM/IMU3oXJG6yk1f1z7tv1v6Wvcx6MyhlgveCmeppSrH7T8FPF/BGY+ynUwOPv86/ukqoxLkND3VC9AcerMq3/YmNfFv/uTrEIkHOH5617ixJzzOaXVRZzV8XK+evcbvnrnG8bd8SbTX54ZN06poAyV1NeerCnE6hXrdGFRHQTLQ7x819vxv5fOXcHFPa7jpBYXMKjZeTxw5pP4iq0yIv45Zrwx23JxstltLPz8J9rvugNZuYk/XqfHSf9zrd04Bw7az/LzMQzFgYMsNxQQ/Bbr4FsUotaCnRLdiGw+FikcghTfjmw+DrP4NqTC72vvghYGrfnCMNjaIeKH0gfRP9AKAxqA6Aak/PUk99yMFF4I5hp9LUGIrEAKzkJSzmnvgnWqZBRsO+rAb9adgJtKf7NLuzIytDtP+3NrLlYB8E/WbftSQHzjSayOC0Hwa8QsBkApG0bGmRh5kzFaTsfIuqbO00sqKFtrjMyLMbJvQbkO+tcbcwDl6gPZd+gTioo1WXH2QTV/emtPLYFtZof+7FXjmPH6rHjZ/ebV+TxwxpM43E5C/hDuDDdjb32DZ+Y+kJL+iGEY9Du1D7MnziVcxUXgdDuSZqiU5JficjspD9ety71qiZa/WbdyA7ccdV8V42ny9fvz+ePHVbTt0ppIOEr/cw/h0DMOrFcwd0uprUjKsBkopbjjreu47Zj7iUaihAJhPJluOnRvx4lXH2v5uk67t+eUG05g0uMfxT9Th9POmbefVE3Kd/Wv63jvySn8ueRvbnoSWu9gMZhEwLCWcZCi63S2AVV2/f5piH0vVMbpqIzzEf8HJOyoHD1BeZHAV0kCcTH/d+bliff0v6+lcquh88wJzgL3EZZzrYryno3436pR1OQAW1eUYzcADO9JiL0z4ntJ99R09kVlnKt3/RDzsVucdpQLIqvAmVvnPEjaZcmIuXua6RNQ8EvEPwEkgHKfAJ6BSU9M/3YkslIXfKkscB1R74pWw3sa4jlRf8ZGTiyY/u9jmzDovmIfn73yZTXDCxUiVtrAB3wBQv4gT1z8PI/OuDulca957iJW/7qWv5auRimFaQrde3flwvvOsLy+x8HdiIRTi8h3iEnffjjy44TS/kgoyl/L1/DXcq2gsGTOcma+/TX3TW5aoSe/L8CM12ezePZSDJsNl8eZoEsjptDrSN0UY/cDd+XV30cy443ZbFpdwB59u3PAgF61LjwX3nsGfU86gNkT56GU4pDT+tC5Z6VLYsk3K7j16PsIB8NEIyZj7nJz8zMGbm/VXboTXIdVGrGq84tu1o2cE4yaH/yvQsbpKPtOkPMCUnI7RNfrpx37g7kW2XQUeleeZFdt5b8G3cjCSvtFQtrtkwLK3h5yxiPFt1eePlyHJLhKlHNvlHNvixEAe/eYNnuNU40EwZai69F1MPg/IOEzNDLB0AuvlD4M5W9TsShK6Afd3CL3FbSi9raBjhfcDxWpkcoO3A05L6Kc+9RrLKWc4Oja6HNsTLYJg56/rohICgUrpin8NGsZoWA4JT91RrMMRs57iBXf/cbqX9bRuWeHWnVg8tq14KRrj+eDkR/Hd9w2uw2zRpWly+Pk/HtOB2DZ/N8sC3aqEvAF+fHLJSya+TN7H556MHXl4lV8/cG32O12+p3au9aGFiX5pVyx7y0Uby4h4AvicDkwTVMXRykV016BO9+9oVogtXnLZpw8bEDKcwKdz7/zXtaph09eOqaaq2fOtExeatuGIXds1G38JKxT35o9bPl6HTxNcrowK4uolOsAyPscpFA7VTYdo/3NdWVvSJKxbe2SvCCM2LokS8hLQDn3gbxPYhWXLpThTfGVsddnXoIEPqH66cOt+2zGdo0ionfWZWPA9IH7EMi6HcOWExvjGt2ZSHzoWIMBOFHZ92n54sjfUP4m1RcwP0R+huCXKZ1G/jWEvoLyicTfSyxmIIWXQatvttkTRzK2CYNu2FTKJfdKKeqzyVVK0W3/rnTbP7WVd8iDZ7H7Qd2Y/Pwn+Ir9HHpaH/y+AJOemEpJfintu+3A5U9eSM++uky9ZsZHMgK+IAumL0rZoI+/403ee2oq4VAEw1C8fv9Eho44h0FXWrtDXr3nHfLXFcbnUxHEbdUxj5OuOR5PloeDT9qf7FzrgGBjECgP8vfyNQmPfzCuJTPeb8ekdXeBkYeytUg+iK29lgswawYXHVCj36hSClSu9i8TJqVUPMcu1o8n9U8bKFO/JxFByt8A3xgdOLXvrOV1XdUrbfW8GqYKquw7Q+4rSMk9EFmqfbqes1BZ18avkaJrqldfBj6EwHTMll9j2LJRtrZIi9eh6C6d825rAZnXoyoMdWg+loumlCPBmZXXbQNI+UQs1fSIQGghbMONSazYJgy6lVytFbrwZQ8czqZbdZVS9B6wD70HVD+unXXbyZbNFDxZqVWtOlwOslMsSPpt0Uree2pq/HMxo0A4ygs3vcZBJ+5PXrtEg/j1e/MtF5fCDcUccvqB5O2Qgu91C3E4k3/domEbyrFr0ucrUEpBsxF6h0UE7Tpx68Bhsr6T0Q2pKSuiwGvtbrP0WwPgjPvjxTcGyp4nbkAiy/U8c8ejnEmCwg1AOfdC5b1v+X0zI2uSlNIHoPR+aD4CiW6AgvN0s2eCEPVD8a2IkYFyHQJGNijDYv2zg9H035NGxaopB6CDzg2TCPk38+8PMQN2R+3rjt1hw5PlJq9dLtePrazKi4QjfDDyYy7f52Yu63UT7z8zlXCo6f4Rrfzf+x+7d9KsmaoYhiIajvLK8AksnLG4VsGiWRPnxXfYNe8/96NK3ZClc1dw58CHGbLbMMpLkwRyTUlQemxSGlD3IGIi/vcx80/F3DQACf8AuRPAey64+kPWTai8KagkQVSce+p86zqxQdha9E25j0Znn9TEBNchuqDIN4bE3WAgQZxLJKhTIMO/piRMJeEVmEXDMDcdg1l4DUpsTC8AACAASURBVBJepudkdRT119IsLKh13aVsZEyyuDJQDwGk+A6dKeQ6BOu9nh3lqZ82/tZGeQbqitwETGjERfbfwjaxQ2/TqWXShipturTihKFH0a5rWw44vlfc+IsId57wMIu/Xh6vsBx3+5t88+ECRnx+1z/WZea4i4/U3Xo2lsR3yA6XA6W0LC/o3HczavLmg5MIlodwZ7rp3rsrD0693XIxMwylBVJqfiBK6eeAbyZ/x4NnPkUoENI21OLt2uwGux24a6O7WQo3FGmVR6XoPaBXXE8mFAwndXpEzaiWXjVyEvLApeROCEypzL0uWwX2qagW76em8eLYT4tuhX/EMg88TgQCn1l2mBe7zpBJ0COx74yytUai6y2yYCqGrZTPNf0fQcldgNLX23aAnDHVKjUl/DPiew2i63Sqo38S2tdtQvRPJPgV5I6z3vXbanHlSDnmpqNigWILV6BZAuY6lK0d5L6MFF5CvA0gJmQ/nJBz/6/HfSwEPtJuJClHp43aIHtEtaKv7YVtYodeVlSOYVhPtaywnPnTFvLjV0uqdf1ZPHsZP89ZXq1cPlgeYvl3v7Fo5s9J7xUKhvnsta8YccFIXhk+gY1/bdqiuWc2z+D570cw8IqjadO5FV326sSw0UP5sPhVHphyG3e/dxOeTDehQDhelRkoC7D0mxV8PHaG5ZiHnn6QpftCTJMDB+2HiPDslWMJ+kOVG+LY/xuGwp3pxpPppk3n1tz2xrUJ42wJH4+fwTmdr+C5a8fz3DXjOLvj5Xz+xiwAPBlu2nVNDNwqBT33L0I2n4Bs7INZdD0SM5wSWQX+yZXGHNBugjUQmJbSnJRSqNxxuiGDbScwdiDpXibJLl+FvsByMYj8gYSXa1dEsk1CTJtGwsug+A4djJQywA/RlUjhBfEcetM/Bck/S/u9w/N0j1Oq9jE1Ab9uhWeF+2SS/6yDEP3T+n0AEI3lWYNy7I5qORuVMw7V/DlUq3kYnmOSvG7LEDG1TnoTVK0rZUM1H41q/hx4L4DMK1EtP8bwHNXo96oLET+m7x3Mopsxy0Yh0Y2Nfo9tYofuLwvgcNkty9DLCsr46aul/PTVUj549mOennM/3Q/YhSVzVlh2Agr4Avz89XLL4GN5qZ9r+tzOhr82EygL4HDamfjER9z74S31yj6pSfOWzbj8iQu4/IkLqj3e4+Du/LZopWWBT7A8xKevfMkJlydqpnTavT3n3HUKr93zrn5AKRDhmlGXUFJQxq8LV1K8qcRyLu5MN1c9cxGtOuTRs1/3pAtlQ1j/50ZGXjUu4XN/8pLR7HVYD/J2yGXY80O5Y8BDhINhzKiJzWHgdIUZOvwv4i6AwGcIoJo/AeGFWjOj5m9dypHg1yiPtQ6ImEU6lzvwORjNUBkXYGReApmXAGBuHhDbOVfNQPKgMqy1gCQ4D8tGygDhhShHN8Q7JNb1p3oGisq8NjblN0msYDXBLNSVmo6eUDKc6gY3iZGLLLf0oRuGC7PZE1B8PQmpjbXi0MUyVVJFlbLpzkQVMzFLITAViW5EOXuB88AtKgwSEcQ3LtbarhyM5kjm9RjeUxs8phVKKXAdtEX6QFuKmAVI/skQLUB/P5y6SCz3VZRjj0a7zzZh0Hfo0hpvttfSoFdFTOH2Yx/k/YKXyWndDKfbkWAs3V4XuW2q5zcHyoMUrCtk+sszWffHhrhBCocihEMRHj73Gd76e0yjGr8KDMNAkv1oa3ELnXHLYA459UDmTl6AzWFjl3134omLR7Nu5UYMm0rI2a8gt00O/c87pDGmnsCsd+cm1al/+X9v0+2Arux1eA+enfcg7z42mVVL/mbXPVdyyqUraNO+6iIQhMCnumrRaIm1Sp8DbNZpmmKW6qYM5mYgpHWwipYgGcswYtkgKucFpGCILt7B0OmSmVfqcnQrbK0BJwkGWdni8rgq8xpdhVr+ur5ONYOsu1Cu3vra6AasjazSWTSRX5M8b4U7qdvQ8ByHuA5CyifozkKBty2v07fOimm5dEM1T96/1gwtgYIzqFh0xWeAvSu0mIhK0J5PDfGNh7JniS+AZj6U3I+JC+Xcy9L9tq0ipc/G/v0rfpchkBBSdDOq5SeNdp9twqAbhsFNL13JPSc/SiQUrbWJQlmRD3+Zn36n9mH0Da9YjnXIaTqNLBqN8uItrzPl+U9RNoOgL2h57Csv8bP6l3V06JYsF7l+hAIh3n7kAz59+UuikSjKwmC5vS6Ovaj29LC2O7XmpGHHIyKcv8vVbFi5sdbGH+4MF6ffPGiL55+MSDiKWOTchwJhvnhrNl++MwcxhWMvOoKbXrpSF3NtPAxMi0C1smsj5+wTMzp+qhs7G8pzmuU8pPytmN5KVePr15onGeehjByUbQfI+1in/pmF4OiJqqV7kvIMRnzP19gwx9QGXYfG3ujcWP527PspASh9AHHtpzU/XIfFUgJrBE4lpBUOxZ/cD58woToqHVUmyrkXYrSsxaArVPOnwGiDqqVgRkSg8Hyq56WbWvqg5FFUs+Rdimod0zeaxCCyH0puRnABUcR9FKrZA/8qidoGEfwUy7hFdDUSza89VbcebBM+dID9jt6L0QsfZeAVR9PnhNqj00F/EG+Wh0dnDKdNp1a4M1y4M1y06pDHiM/viqsyvn7fJKaM/oygPxSTxbU2hqYpuDypN1ioDRHh1qPvZ8KID9mwahOb1xQQDkZQhsKd4cJmt+HOcLH3kT05+oJDUxpz2bxfKNpQbGnMDZuhG0t4nJx8/YAGNd5IlT4D902qdRMORgiWhwgFwkx/eSbzpsSycZy9sP4aGmBrp32gua+DfWfArQOTRi4q57nqglxVCc7GsqpTOSBcGT9RSmlfsevgWo05aA0SlfOiPjEor56LrROqxeso5dTug+Lb0e6SCqMcBClGyrTmh/IOjhUoVQ3GeSDjYpQtT78fe1csdWhqIvlJv68S/hXZdAhSeCmUJvG1A9h7olx9azXmerwVaCliCwKT6p6rJUGQZN2YdJxASzF8hhSl1gbw302yU4zEpJYbh5R26EqpY4Cn0d+0sSLycI3nOwCvAM1j19wqIqlFrOrBjrvswBVPXQjAUfbTkhYbZTTTBrtrr5149feRusRehA7dd4wfU0WE956cUi1oaoUyFO133YHWHVs2yntYMmc5vy78Iy5ZADq90p3h4qjzD6VVh5b07Ned7gd0TTkTp2hTCcqwvnbPQ3dj6Ijz2GHnNnizmmaXs/qXtfz45RK82Z6k86hKwBdk2ouf0+eEfbWbIjgz5p+u2IF7IPOGeAaLsndA5U3RAVLxg71r7eXntrYQNkh0X0TB0Dshkaj2Yfpe0QFK596orDtQjm5Jh1XO/aHlbO17Vw5t0Cv+jcxNMRdPTaLxdEGl3NDiXe1LD0wHIxvlPbeazrnKGYUUDolJA9iSSxGoxM5W+n2Z+vVmXQE3L+Q8X8c1VL63ZDS426RLu6rqnGcQgjMQszB5WmodiASR8vf1LtnIQXnP1jGAfxLv6RbSyTZw7oMyGq8hTp0GXelfznNAf2A18J1SarKILK1y2f/QzaOfV0rtBkwDOjXaLC3od0ofvnrnm4THd9l3p2qFRUopOsZ0VaoSCUfwlyVPYXNnuFCGQUYzD8Mn3tg4kwZWfPc7UQsp2YAviNPjbJBLpHvvXQgHE49zLq+Lgwf3Zue9G6EDkAUiwtNXvMBnr87ScVlTLAPRVgRjPVKVvSO0eA8pe1bLy9paozIuQ8XkYquSasqcyjgvVh5f48dj66C1UIilQvqnVF4Tmo8UnAEtJldv9lBzbGVYV5MqL0kDmKpSpVAZGagqwdmES22tocUULadrbkZ8EyD0WeKFzt7W9wr/kGQRUGDroittXb1R3rNS93079iJp3rDRsDRGpRSSeWMshbO2VFL04mnmJ81Aqg2RIJJ/OkRWonf9Cgl8hmTdgJEkAN4UqIwhun4i+I0u2kLpquhmiX0FtoRUduj7A7+JyB8ASqm3gUFAVYMuQMUy0wxY25iTtGLY6KH88dOfrP19A9FwFJvdRrOWWdz93s0pvd7hdNBmp1as+z1RWKnzHh05edjx5LbNodeRPRtVBbFVx5Y4XI6EoKXL62KHnepWibQip1UzTrt5IJOemBIPAjvdDlq1b0H/85smAAowe9I8Zrw+u9ppIxXcGS6OOKtv/G9l74Rq/njS60UEAlN0Wb34wX2c3tkm0UFRjh5Is4dixsLUlZz2XbWbRikkmq9TIWsGOCWE+Mahmt1Tr/cDoIxMxNU35u6puqh5wFs/w6GUgpj6ohTfa31RyLoAShtzq1OSgK0tRm79+5MatixM17EQrHnoVtCsFpdOXeN6T0QMjy68iq7VxV9SguXCkarwWA2k/P0qxpzY2AEofQzxnPSPBV2VcqByRusU1/ASXX/gPKDR5YNTMejtgL+r/L0aqCmAcDfwqVLqaiADONJqIKXUUGAoQIcOyXdBqZDZPIMXFz/Bguk/8sePq2jXtQ19Bu5br7L/K58ewn2nPh4voVcKnB4X1zx3cWUT40am94BeuDPdBHyBaj5vu8NGRnMv0178nB59u1sGYKPRKJtXF5DZ3Bt3K1VwwT1nsOu+O/PhyI8pLSyj78l98DbzcEnP6ylYV0TH3dox9NHztij9siZTX/g8acOPmtjsNqKRaLxo6oiz+9b9ohhSMhz8HxL/UZb9gQSmQItJSQuLDM/xiPsonTmislH2Kqe06B9abjahLDyiuwA1ENXsEaRwqO6Nqmx6fM9AlPfMBo+Jaa0Jj6y1TFvE0Qus9NmVB+VueB65av44UtoOyl8BQlqV0XM6lA7HLFyle7ZmXocRa7eX8rjuo2NVuCCRv6p0rzLj8yZzWIMzaXQw0qJKWjl0Sqyr6TY8VihHN6jFrbfF49eVzK+UOgU4RkQujv19LnCAiFxV5ZrrY2M9rpTqA4wDeogk7zTbWC3o6mLZ/F+Z+dbXiAiHnXEQu/Wprhcyf9pCRl33EvlrCmjTqRXXjLqEPfrt1qRzWjTzZ+484eF4Qw6bQ0vZIhCNKTceevqB3DD28niq5FfvzuXZq8bqhSBq0ueEfblx/BV4Mq394u8/O41xt71ZvQ+px8mDH9/RaO/vur538vOc5bVe43DaadWxJYedeRAl+aXsf2wv9jtmr5RTQCXyF7L5eBKCnMqLyr4H5am/i0qiG5BNR5CYE24DzyCMZEqPqY4f/lX7wB3dt7ijjbnxUDAtDrxGK4xWVm3RwPS9AaWPEK8uVR6w7Yxq8VZqlbW1oO1FFELfIIVXUd1d4obs4RjehssDSGQVUvYMhL4FoxUq83KU23J/mBJm0Q26yjihqjoDlTM+uUzxv5jaWtCl8qtaA1Q97+wYe6wqFwHvAIjIXHQYf6srwI+77Q1uOuJuPhj5MR+O/ISb+9/HmJtejT+/+pe1PHLes+SvLiBYHmLDqk3cf8aTbFqd32RzCgXD3HPKY9W6K0XDUcpL/JSX+gmWBwn5Q8x6dy4z35oDaA3xRy8cSfGmEoLlIcLBCHM/+p4HznzK8h7RaJRXh7+TEPAN+kOMv+PNRnsvh5/dF5dFz1K7044320Nm8wyOvvAwRs5/iPPvPp2rn72YA47rVb98/orCoppIORKc3aB5K1trcB1OojaLE5VxcYPGrDa+oyvKfVjjtCfLvJbEeXog85qkLzEyzkblvgaeE3Wv1KzhjWLMoULN1I6UPkqi7zsAZU9sWcVndBWEf9KB2OjvWvPGshlJivP1nk1ihokClQ2O1No1bkuk4nL5DuiqlOqMNuRnAGfVuOYv4AjgZaVUd/Q3cMtq5reQVctW8/4z06opNQbLg3w0ajpHnXcInXt25MlLx1BWWFlyHPAFCQXCjL7hFe6ccH2TzOurCd9QVlh3+7mAL8iUMZ9yxNl9mTDigwQ/dTgY5ocZi9m8Jp+8di0Ih8K8ft9Epoz+DL8vkFS2d9XSJEf4BnDMkMP44s3Z/L7oT13N67Rj2A3unHA9BxyfevMACS3SDRXCS3QJfcbF+gcXnKb1vC0PevakhUWA7r1Z8qDe6SkveM9GZV4W179WzR9DSkdA+btAAOy7oLLv1vK09UDErzXCTZ+uRqxlTg3B8A7GJAJlT8YCg7mQcS2G1zoHvwLl3BPlbEKDFfnT+nEzH32aqr9OioQWVd/1SzmUv4aYm3QQWDnBdWi9WuEpZy8k6wYofSyWHijaBZc7fptof1df6jToIhJRSl0FTEenJI4XkSVKqXuBBSIyGbgBeFEpdR36bHOBNIEwQ/66Qqa/NJMNqzax5yG70feU3kl95vOnfG9ZgBQJ6d1th+478vPs5Qm7CTNqamGpJuK7T35I+dqKxWjdHxssRQrtTjv5awvJa9eCe05+jG8//qFO3fiGBl6tcDgdPPLZXbx69zvM/WgBzVtmc+H9Z9DjoO4pjyHhpUjBecR/xOY6KH0AfXisbWdmR3msS8Qluh7JPzUWIBRd4ON7EYmu1HICgFJOVPb/kKw7gAhKORCzBNP3iu4IZN8d5RlYq/GQ0AItYKUnDiVRJPNSjMyrU37/qWB4TwXvqVrREcc/JixXK7Y2sTaANVBZJM+5rh0pG4nlrj/wARKcjv5OmNB8JMqVegzGyDgf8ZwUO+3pnfn2aMwhxTz0WE75tBqP3VXlv5cCTSqU8POc5dzS/17CoQhiCtNfnsmr97zLqAWPWOZXO1wO69J5Q2m5WAXKpiwrre0pNIKuL798/zsLP/uJ/HWFKV3v8jrjgcM9+u3G3yvWJqQ7RsJR2ndrx+pf1/HttB/qPOq6vE7Ov7e63vfvP/7Jdx//gDvTzSGn9iGntUW3+iSEgmFuPvIefv9xFYGyAGudNm496n7+N+H6BL34ZEjZsyQWAZkk/sMowKkrSHGgmo9Iml4o5a/F8qOrfh4BLScQXaurRCtGVQpwaN9t/qkxNcUAMAXxjdSBV4tdt0hIF+5IjdNW2VhMWzeUrRXYuzRKY+XKuSZ3mUjkTwjOAAxwH13tPTYJtk7WBt1o0/AFJ7oy+XNVxNmk6CpoOad+O3Uj6x8PgG4NtonSfxHhrkGPVMtxjoajrPl1HU8OHc3eR+xBu65t2KPfbvEv016H727pdoiGo+x5WA9sNhsHDz6AOe/PJ1LFUDpcjjq1TgLlQeZPXUjAF2Cf/ntYNpT4deEf/LpwJW06t+Tz12Yxa+JcIsEI1FJ4Yxi6r6k7003H7u0YcGl/AE6/5US+ePNrykvK45kxbq+L024ehDfLw8djZyQ15ro7DrTcsQVDHz2Pffrvwca/NpGZm8nYW17n01e+JBKKYnPYGHvL69z+1jAOHLhfre+/gukvzeS3H1bGNXYioSgRojx87jO8u2FsahlH4WUkzd+u9kY8kHGF1lqx74JStXx1Qz+SGPBEZ7ZEftMpYzWQkjtjKXMVC4kfzCBS8gAqZ6TFPeZiuRvAD8VXI8oLEkYyLkZlXtOku2qzbHSsaMUEFJQ+gWTdrBcVs0znnSdtoddAwklOmtHfEInU/u+TDHv3WEFVXd8HQxdr1TOj5r/ANmHQV/+yltIC64q5Lyd8w7wp36OUolXHljw+826a5WXz89crsNkNopHqPzrDpljy9XK67t2Za0ZdzF/LVrN+5UbtqlA6B/2kYcczf+r35LbNYee9O1f7MS6evYw7BjykFaJNwYxGOeuOkzn7Dh3ZDwXD3DXwYX6eswKlwDRNwoFIpcGtRaqjxQ65eLLc7H9sL067eSDTX/qS33/8ky57duLxL+/hnccms+iLxTRv1YzTbhrEYWfoQ5HNnvxE0apjHi8tfxqH08HUFz/jlFYXEQ7pBs1imvHPp8I99dDZT/PO+rF4Mur2gX7xxmxLwTQR4ZcFf7D7gXV3IMLeGUKplC0YKPtOKEcKGTr2XfXxuqbLRkJgqyyEEREI/4SY+drXnmCgzXiVZwISwjrfO/a6iuIe33iwd9QByiZAwr/GjHmNU07pfQgefUotiSLe8zGyG69ALrk7TKifymMlKvOqWKA7STOWavdoaIXq9s02YdAL1hfV+nxFLvSaX9by1KUvMHzSjRRtKk4w5gBmVCjcqMfLzs1izKLH+GnWUtb8so5OPdoza9I8Ltr9OpwuB9FIlLY7teahT/5Hi7Y5hAIh7hz4MP4a3X/eeuh99j68B7v12ZW3HnqPxbOXpVwxWe19bigiujrKhlWbeP+ZqdidDoLlQa1F43Xx7PyHaPNqon/2wBP3Y9Swlyx36YedcRAOp4NvJn/H89e9XKdipWEz+OHzxRw4qO5dutNr7QKQenRBUplXIQXfU2e1IAa4+lW/T3SDzoawdUYZlXn5KuN8JDARqmVHuMC5f7zaVCKrkcIL9esl1sDBcoJJfiLO3tb53gn4Ed+LSWV+txQJTCe5cfVXbnb9ryGuPo0nIes6DAKfUH2HosDRq8HZNMrRDXJfRUof0fUAyhtbGGt8zhIFZ+o+9P8S20RkoNPu7VNq/BwJR5k7ZQGRcMSyArSCqs8ppdjzkN057pIj2bBqM1PHfEY4EMZXXE7AF+SvZau571Rdxbjwc+vWcCF/iE9emgnAx2O/aJAxB+I+8mB5iGjEjKcdBnxBSvJLGXn1OMvXtWqfx5Hn9sOwVf/nzG6RyWk36TztN+6fVKcxryDVePaAof1xZyQGwDJzMlKWG1DOfVA5z+iyfAz9I3YeDrh0ybzKAJUTy0rQhkLMMsyCS5BNRyIF5+mmGGUvVI5p74DKeTVW5q872uMZFHediIguAIr+HStiSZZ15AT3QOt5G1ng2D+l95i8wXRjkGLugfi1nG4jobJuifUXrYhfuUFloWqpHDXNEGb+hZjru2Gu3wVzQ2/MwJfVx3XuidHiTYw2i1Gt5umOQ3GlRUPfJ+sGlK1xtJW2N7aJHXqzvGz2OHR3fpyZpNy5CmIKZtQkf23y4GOywOR7T09NqHyMRkx+XfgHm9fkEwpYG0QRib8u1Z6lDpedFm1zCAbClBaUJU0zrMA0hQXTf0z6/I3jr6DbAV15/5mplJcEOHDgvpw7/FSycnTgaONfVsJRiUTCUX6atZRFXy6h38m96XFwN0v/byQc4aDB+3PkjEP49OWZKMPAZjOwO23cN/nWevmMletQVMtDEQmiszgMxPRB+DvADc59q/lkpfiWmA87VCkOVfYcYu8YrzpUzj1ReR/GMkPs1bMaIr/pjkeWu3Ib4NB6G7adUVnWUhIS3QDhb1N4dwY4mq6zvHIfjfhepFZfXgVSlyujHve1tYG8TxH/ZIgs1oJpnsHVGmQkkH989UCqFEDRUMzcdzEsUix1Q/BHITRPn0SUB+UZVKuA2n+dbcKgA9zz3k3cc/JjLP56OYZhaMMp1XeTSsGu++2M0+2ky16dWPj5T5Zjddmzk+XjZYXWfnqb3YavuJy9j+hpaXjdmW4OjWmsHzRoPz599auEjBSlFMpQunWcguETb2S/Y/bmzyV/c3Xv2+o06EBSaVrQOu8DLz+agRYdjgC6HdCV+VMWWKY/VswrGjUxI1E+ePZjxDT5ZNwMDj39IK5/8bK4gf789a8Ye+sbFKwrpFnLZpw7/NSY22oZ2S0y2f+4XjhdDZMDrVrerYyMSp3xKohZFPNr11xc/YjvhbhBrxzT4vgvpVh2QQKtoJhxvpaxdfRKvjCFf9B5zbWqDdq1Ecq6rpZrtgzl2AXJvAzKnkcb9WTd7D0oz4D4XyICoXm6z6ptB3D3r7fmuDIyUBlnAnVLG5ihpdZZMaC7NOXp5tYS3YSUv6RFrGw7oDIuQrn6oFx96jW3/yp1lv43FQ0t/d/41yby1xWRlZvBDYfeTXmJdo24PE4cLgdPfX0fHXdrT3mZn8E5F2DWbLigILdNc8pLA+zRrztDHz0vrsb4ws2v8cEz0xKEs7Lzsnhn3YvYbDamjf2cUde+RDgUwYyauDNc9DpyD4ZPuhHDMCjcWMxV+99KSX5pXEHR7rBxzahLWL9yIxnNvBx6+oHxxskiwglZ59Yp4+tw2jn8rIO5cfyV9f7MAFYuXsXVfW6v5nZxuh2ccsMJuDwuzKjJGw9O0pk4VXBnuHhg6u3s0W83vpwwh8cuer66nIDXxdAR5zDwiqbpN1kTiaxCNg/EMnBmtMVolSSIWXUMCSAbe5PYUs4FmVdjZA6te4zQd9ptUzNtEUP3LFUecO6Hyryk8TNMrOYT+UO321M2BDuUPo72rUcALzj3QuWM1VWeEkAKLoDIcr0gKTfgRLV4E2Xv0iTzM8vGQtmIJM96Mdos0pIMmwdW8ZvHGohk34fhbbrGLNsatZX+b3MGvSr+Mj+fvz6bFd/+Ssfd23P0hYdV62D/6w8ruePYByjcWAyAw+1AQdzHrRR4sjy8+NPjtOrQkpL8Ui7f52ZdYu8PYdgMHC47t71+LQedWOkv/XPJ33z6ykzKS/wcdOL+7HPUntXK2QPlQb54YzZL5/1C+1134OgLD4sb8JqUFJRyct4Q6zeowOV2YtgM2nVty2NfDE8Q5UqVgvWFXLT7ddWqVG0OG49Mv5M9D92dT8Z/wXPXjrcU22reqhkOl113gypNDF42a5nNxA3W/v1Ukehm3T3IaI1yVM+OEYlqDfHyN3WeuLkJax2WEzGaPZTS/UzfW1B6D9XcLkZrVN7HKeU3i5jIpsNjLeyqbhrcqBaT6mwasSVIdK0uwgnO0c0+Mi7WCpRVThMSWYn4J4FZhHIdDq5D4hryZtlIKBtD9UwRBfZuGHkfNsmczeACKKxZYB7DthNGy08wi+8G/zskBHlVNqrV3HiV73+d7dagp0r+ukKKNhZzde/bCQerH0ftDjsDLuvPlU9ro+or9jH1xRl8/9mPtO7YksFXH0vnnrVrPgf9QeZ88B0b/9rMrvt1Ya/DeqTsQ/7kpS94/CLrRgN2p50rnx5Ch+7t6Nm3+xblMt9/+hN89e7chMezW2QxceM4Zrwx3Q2TaAAAIABJREFUm2eueLFWjfhkKAXTAm9hd9TfgyciSOlD2lgrp85gsO+Eyh2HMnIBMIuug8AMKjNhbGgjWvHdtWuxrrwPU94NmwVDYu3gqn4f3KgWb9eaGilixhtciBhQdFlM+tUADMh+AMOT+mlFxNSNl8sn6Lm4B6G8pyTNFNG72AGxXWyFW8+tW/VJEWBHeU8F98Ck1ZDmpiN0QDgBJ6rlzCYLOJobe1sHiJu/iOE+JPm8lBfVYmK9ZRm2V2oz6NuMD70h+Ip9jL/jLWa+PUdXmFosXpFwhNmT5rF+5UZ23X9nBlzan9NuHMhpN1pnN9Rk9S9rua7vnQT9IUKBEA63k5326MiIz+7E5am7BLpt5+Sl+N4sT7y4CHROe+GGYrzZnpTyxKvyzUfWi2dJfikb/9pM7wH78NRl9dfKBshtm9MgYw5A4EMon0BF01xA96osug6V+woS+V27EqrtJqOAK5ZTLlpXOvOSlHVUJLoGQt+R6GsO6RTD5k9avy70LVJ0nXaziOjy9+bP6Qws06fVFeuZsifFt2iJ14qAZXgZEpimu8FbGGTxjYu5iqrGaAIQmll5TcnPEPgSlWMt3mYZSKl8sl7zrxd50yD/zCoVoU7IuhXDHSvkM1pYG3SJgGpYt6L/GttE2mJDiEajDOt7J9PGzqC0oIxAWXLBqoL1Rcyb8j1vPfgeQ7oPY81v61K+z4NnPU3x5lL8ZQGiEZNAWYDfFv7BhBHJj67hUJh3HvuQId2v5YlLRmN3Wgc7T73hhPh/f/Phd5zV/jLO63IlJ+cN4eFzn8HvS303bdUlqYLyUj+ZzTP439vX4/I68WS6U84jd3mdDHkwyVE6BcT3Mon+8AiEvteNKMI/WastEgTHrhgtp2I0u6t+olgVzRQSMCFiHbiT6Aat22JuihlUP0T/hIJzwNZBZ9XU15iHV+hWdNWyTwIQ+RlCs6xflHCqsBrYD8GZSDhJVphnEJYKhPZOurq0iTCMXIyW06HVz9DqW4w2P2NknFM5g4yLqEyDrMCh6wcaqYny9s52a9AXfLKIDas2pZQ9UiFoFQqEKSvyMfqGV+t4haZwYzF/LvkrYecfCoT59OUvre8lwv8GPMyrw9/h7xVrWfv7eoCEXpwHDd6fM24dDGhN9wfPeor8dYWEAmHCwTCzJ83j4XOeSWmeALltrdPJlFK06ax/xL0H7MPz34/g4JMOYJ+j9kxJ02a/Y/am/7lboJERLU7yhKGzUYw2WFdkOmO56/9v77zDoyqzP/450yeNhBAUpSuK2FARRV0XRcWCnZ9ib2vviq6uFXdde++I2HthRVCUFcSOosJKUUCK9N5Spt7z++NOwiQzk0xCykx4P8+TJzN33nvvyczk3Pee95zvaQCuHiQ2twDbeSRvQK4Vo+xwUPWt2D0vv2iYHaHJJJ0RazkaTGyvCICzI6krVOOJxKpfE5HcC+33QCo7PuXYceo2D6dx3C3H4fDgSJLeKL6BkHcJdk57HuC1M41S3DEZEsn6kEs0EmX9qo0UFOdV0w75Y9pCgim66ThdDlRJzIDBdu6p0h0TByup/rlSrU3M+n42M7/7vZqsbyQUxZ/nY/D1x9J22yIOPHFfitpv/sK/fd+ohBz4UCDMj+OmsnrpWtpt17ZOUy99+FzuPu3R6n+zwCGnHVgVvpn49jc8eP7TMVkDi2jUwuF0JH2fKvn6g8k8//fXuOj+s+q0ISmurhCuKa8PELEdtrOzXcASDVAtzCBOpA4J2VSIoxDNOdOO21fdHTjsFMPcFAvU0RUk1YfRaLXm0Fb5h1D2NFgrwLULkv93xNM7+TEdbe1K1ITURzeEpmGtuxQ8ByM5J1SlFEru39Dg19RdHu9O2YNTHDlQ/B6EvkRD/7OFvHxHVau2bSkceZeiOWfZipeOEsTVsNZzWytZPUMf9cTHnFxyPmfveAUnFZ/Hi7e+iWXZzme7HbZJ2nzBn+fj9FtO5vb3huLyJL+eef3p3ToXbVNIx506JFSxenxuDjvz4KT7/DZ5bsLCLEBFaYBAWZBBFx9ezZkDLJm7PGnY0+11sbpGMw5VrXoPfpnwK0MPvZMzul7KF+98y+DrB+H2unE4HTicDvqfcgDXv3AZYMfSHzzvaUIVIYIVdhMN+85FcbmdSStCK3n/kTEpX6sTrUU231qHiANp+xq49wA8gA8c29kpeFugPS75N0LBrXbjZEexnSVSPCplUwrx7h83o62B2+4gb5W9bPcxjc63wzLhn9C156DhFBME32HYC7w1CUNkmq2euOledPUJqGXXSIhnL2hzTyym7AfcJP03Fgd4D0/cXvmyOBBvfxz5V9mLsBngzCsRRx7i2ds48waQtTP08a9MSmix9v6jY3G6nZx9xykccEJfnr3+ZYIVoaoZpjiEYEWIdx4cjcvlxIpEcbgcWHGaLx6/h6P/NiBtO/7xxjVce/BtREIRAmVB/Hk+tu/RgSE3n1g1pqK0go+eHc/XH3xPoCyYVGMG7Hh0MnY7qCeLfluaoO8eCdnyuWCnSg4f+gqfvfwFoWCY7XfclhV/riIcsENOKxetRhDcPhdW1MLjc/PDJ7/w56zF7Ni7G5PH/ozTlWQRTuHoCw/j5GsHcU6P5DrfVtQiWBFMaxE4ceeaueCVuO2QC8WIswNS/Lad2qgBcG4fa/a82p4du7oikrhIrOFZEPoWpA3qPQwJTULL3wMsxH+SXdmYk1xTPQHvAHB2tzNcqrJt/OA7FHH3RDUMpY+TOHOuQDc9grR9MeGQIj5bu2TdJTGlR4nF5+MFrioguhQtfxnJs2sQHP6jUd9Au9rVUQDh39D1V1N1ByG5SNHTTe6kNbIILRtpr3O4eyC5f6szE0WD36JlL9vZLr5DkZwzm61R89ZA1jr01/75XmKLtfIg7z88hjNvG4zH6+bxb+/mob89y7QvpgPg8rgJVQQJlgWrciYEWzLX7XURCUfZ69DdOHvYqWnb0XXXTry+4BkmvfNtLG1xR/Y9qjdOpz3zCpQHuWK/m1m+YFVC16GaJGvIATDk7ycy8c1vKN9UURXv9+V4Oem6QeQW2LPGO068n+lxomCLZ9dY2FVQlFCF/XooECYUCHPvmY8zYvojWJaFpshwcHlcbLfDtrWGXzy+BrY38x4CFW+SmHvsRDc+jDpzEf9gcO8K4amgARTQTf+G4JexLjQWmnc1jli4RFXRjTdDxcfYYRo3cJtdcBP75DU83RaXKhpelQ5aqb5IdL5dyu7edbM54oLiN9CyVyEwGvDYzZ/9sQu3tSa1WFdkVso/X9y9oGQSRGah4dmw8U6g5kUuCIFPIG9zUZmIEyr14L37Q/tvITIDcIGrZ5M3cNDwbHTtqbFwUQQiM9GKT6DtC0iKdQirbCRseozNzb5/Qyveg+IPG1U3fmsmax36mmXJBY+CFXYbOV+Ol/adS7jvs9sIBULM//VPhh56Z0LoQi1ll/17cPzlR9J1t8507ln/qr6cfD9HXZB8Vv/ZS1+wYuHqOp05QtJuQ6rKNl1KePKHe3nx1jeZ9sUMCksK+L+hx3HEOf0B+PO3Jcz4+rcGiYIt/WM5a5evo+/Re2Nd9nzC6x6fh/6n2gp9/U89gAlvJDYm3vvwParlyM/9ZT6T3v0Wcdhhne57pM7jl7xL0eA4sDZiO9uYI9IQhMYBglZ8FBvsia1bVGBfiqObFzdLH0OdnRDf4XYaYGAcm2fSle9L/AWzwtaKCf0A3v1QaxO69jyIzo2dX1H37kjb5zfHr8WH5F0IeReSQIp4NQDO2kMHIgLuXiC5aErVx9pnsSLOWFiqedBN99Soko0CFejGO5B2YxPHW6Ww6RGqp58GIboSLX8DSaM6N6Utwa/R0mfs7CXPPkjeFYira4OPl81krUPvtnsXfps8J2G7N8fLjYcNo7CkDSdefTR7Hbo7Hp+nqvIzGZFQhIMHN41WxPdjptRZ1g/2jLvfsZtnNuNfncTIW95g9eK1lHQs5vx/n1atz2kkHGHcyAmMf3USpevLUs6u60LV1qpp066AK568gCeveCGm827h9thFV7vsZ1c93vjyFaxbsYFfJvxalZzRc78enHvXEN57+CMKivNZMGMRo58aZ68TiPDBI2M47eYTOePWwUnPL8520G6sXQka/A5wxrTMK52xUhVKSJqZUjmsAi17DvEdjpZ/kKSsP9k+5WhoMuLdD934L7sUPn7hMzwV3Xgf5JxmV2TWUnAj4kVzzqix0ArgQ9JsSSeuLqirC0TmUL361I/kNHDRuakI/ZR8e+QPVIPVdHkACE+PXZBr/i8EITgRGujQrfL3YeNdVL3ngWVo8HMo/gBxpaf42ZpIy6GLyJHAY9grOCNU9d4arz8CHBJ7mgO0V9X0e5k1gIvuP4ubj/pXdUlYsUMJs763Hf3Pn//KuXedyuDrjqXHPt2Txq49fg8HnpimDGoDKO5QVNWJKBW+XC99jtiTiW9/y7sPfUReYS4T3vy6ala/avEaHr3Eloc97My/YlkWtxxzDzO/+z1pqX596NC9PW3aFQBw1PkD6H3Ibkx65zvCwTD9juvDjr03/1M4nU7uH38761asZ/HsZWzTtYQRN73GDQOGEY1EcTod1bJ3QAlWhHjjnlH89dQD6dgj+SKmOAqRvMsg7zKsDTdDuP7VqgBEKxdY01AeBMBnZ7yoQmAMyQqNqHgDDXwIGkY9+yOFjyTEfNUqB4JI/lBU3FD+in3xcbSF/JsQb/IF8mRI4TPo2rNizZZjsfScU20Z2UzCkQ9Wss/JHfupOb6I5LrtAo52DTJBNQKb7qH6BdSyL+6lj2+V6Y51OnSxBSCeAg4HFgM/isjoWB9RAFT12rjxVwJ7NYGt1dj9L7tw//jbGXnLm8z/dSFev5d1KzdUyzsPlgd58da3OOqCQ8ltk8slD5/Ds9e9RKgihKqdzVLSqZhBFx/RZHYee9lAJr79TbULjziEttsWsv+x+xCNWJR0LOadBz4kEorYFx0hIT05WB7ixVvfYsAZB/PT+P8x8/vZtTpzEVurRURwuV0EKoJoNPGismlNKZZlVWnRdOi2DUP+XnszhqJtCinappAJb3zFd6M334Gkyvi3ohbfjZ5SrVAqteEF2POGdJ1yJQ676QTYueSpCnOqW2bnl5e/RK3FOpWhhdD3sQrWEfZmax264WYIfmW/7uyEtLkH8q627xAkrwFyDVbsfJU9UR0QbUo99QaScxaUPk31xiRe8A9OHr937WTn0EfmUf2z9dnqlg0hujzFuoUFoeaRFck00pmh9wXmquo8ABF5CzgemJli/GnAHY1jXu306rczD064E4Dr+t/OqhopfAAuj5Pfp8xj7wG7M+iiw+m+e2dGPfEJa5et44Dj9+Xovw3An1c/2dD6sNM+O3DV0xfyxBUv2DP1qEVJp3bcPeZmOnTfhkg4wuBtLqh+p5FiMr/yz9UMdJ2K0+1MWjAlIri9tgzunv135fLHzqe4QyHrVmzgur/ezroViUU85aUB1ixdR0nH5JV4lTo165avp9cBO9Oz745VTuqTFyakdYfgcEjajbfFfzJa/ib1d+hA7gX278i8Wgb5YtK5UUBjC4npErKdenQlOErsmHtkNlWXsug8dN15SLuPG9ykWdecGtNkqcSC4Gi0vDcSV1XZ0kjuhWh0EVR8COK170i8/ZGCm5KPF4GiEbZCZeTPzZ9B/k0pF1HrxFFIyu9JE1a8ZjLpOPTtgXiBhcVAUsV+EekCdAMmbLlp9aPttoWIJMpUWFGLguLNK+i9+u1Mr35p9LpsRI44uz9//b9+zPl5PrltcmIdmGyn+Me0hdXSJutCVVNWv6oqf7vvTE688uhq23Pb5FJQnJ/UoatlkVOQ/II2f/qfDD3kDsKhCOFgBJfbyZ79d2XYqBtxupxEo+k73b+cnF6TB3HvhBbcAhv/FdMbj1B3ezoAl70Q6t4JoqmkG3Ih/xpw9oD1F5O8L6WDqmbLya6s4rbDIdZyiMwnsW9p2F7ky7f7d6pVamdyhKbYomM5p6XMn7fCs0ATJyWArXe+BQ7dzuCZamuluHttsdCViBNpczead62dFeTslDKHv2ofZwek3UdoZC5Y68HVyy5yaqgNjjzUd1RsATz+s/QjuZfUub+d26+tKm2ysXObhgDvqSbUSAMgIheJyBQRmbJqVS0FJQ3ghCuPxlOjIMjhdNC+c7uUDS3SJRQM878vZzJr8pyqop364vV72e3AnnTbrXO123B/no9AGoum6aIp0goHX3dsQnGQ2+tiv6P3qUp9rHYcVe4a/CAb15RSsSlQlWc/deJ0xjz3GWBfqHxJirfAXpz25Xjx+Nxc9cyFtNs+fS0OR86pSPtvkDb3Qs6Z2MsydRGyhb4AvAeRqFUCEEH8xyIOTyzdMdnJS8B3DLh6k3y+o+DqbueAJ00NDFfdIWh0Fbr6SDu7I/gZlI1EVx+JtX4o1qrDsVafiFaM2lxVHElc5N982lQSCXWj1jp0zfHouvPQjXegq0/CWndxrJvTliHOdohn3zqdebV9XDsinj5b5MyrjtXmn+A7HPDYhV+Sa7eo86UuqtLoUqw1Z6Ar+6Ir98NaPdjWk28FpDNDXwLE5111jG1LxhAgZQcGVR0ODAdbPjdNG9NitwN7cslD5/Ds9a/gcjuIRiy27dqeu8fevEWys99++CP3nfMEYDu5nHw//xx9Ez327t4odnt87pQyAS6PXQTkcAiRWsS1qo7ldeNLocI48LxD+PO3xXz45DjcXjfhUIRe/XZi6IuXJR2/9I/lSUNYwfIQrw57lwlvfE2XXTvRY59uzPllAYHSAB6fG4fDwfUjL6NsfRkiQr/j+lC0Tf3Xx8VRAL4jwL03Wv5qejtpGC170e7AI4Wga9kcG/eB50B0/XV2MVPSTkMC7t44Ch9Bo8vjmi1UzsL9kDfUzmhx7UL1JtSV+MC9j21O6SOxxc3Kzy5kT/oDozebvOFOCP2KtLm9ar+kNDCEY5/jH7GCqDh7g9+ipc8h+ell4GQqIj6k8GHU2mC/186OtYqkqYbssJa1iqpMosiv6JohUDIh6/Ph69RDF7uZ42xgALYj/xE4XVVn1BjXExgHdNM0RNabSg+9oizAnJ/mUVCcT9dd6186PP/XhTx/02vM/GY2eW1zWbVoTUIxTV5hDm8vfb7hxTRx/PbDHG44bBiB0kQH0233zgyf9hD3nv0EE9/8ulZNFbAvDq8vfCZlMw2wS/znT/+T9p3a0aF7auneRb8v4bI+f681Ru50OXB73Zz/7zNYu3wdRSVtOOT0gyhqn/r8DcEuSHkUO6UwVThEsOcnYs++JR+8h9q9Rx2F9vbIrDhlQ0fsGPHH8SFtX6nSXtHocrT0WQh9Yze/yLuoWsaKte5qO+UuXqfdUYS0G4c4CrBW7B+7qNSFByn5L+LcFmv1iUni+gKFwzfLzNYD1QC6Ym+SLlk72uNon1hX0JrRwKfohptI7DSVgxT8o8H6QM3JFumhq2pERK4APsVOPxipqjNE5C5giqpWTjeGAG+l48ybEn+ujz0OTt2goDYW/b6Ey/reVNWGrWxj8lzm8k0BJn/8C385acub/3bp1TFp9onL42Lvw+1CkdNuOoEv3/02QVhLRPD43IjYi63Xj7ysVmcOdkOLPf+6a61jADrutB0Fxfm1OvRoxCIaCfLZSxN45qcH6jxmQ3Hkno/l7Aylz9oO2ftXqBgFBGJZDlFsRx+bjWvIlgiI/omj5FM0PB1dcwYJ6W04AGdMStcNBXdUE9IS57ZImztT2iWFD9ml7+Vv2Hb5+iN519l3FwDiT7nAXf1AHrtC1bkt0vZVdN1lsQbZ2Hbl39IgZw6kuIuofK3xQn0tiVobIfARGllsa914D63WVLwa0cUp/u5yNPpnWjqWmUxaeeiq+jHwcY1tt9d4fmfjmZUeKxet5oNHxzBr8ly67tqJwdcNotPODe/f+ORVIxN6aibDilrM+emPRnHo/jw/Zw87lVeHvVPlPJ1uJ7kF/qomG4HyEDVVHZ1OB3sfvif9Bu2D0+3igOP71OnM64OIcMtb13LTwH9iRawa+eXV+WPqQjsP3ZVeJkt9scpH2aJXRO2fisXgPcrOqrBWoqWPxXRf4onaGSkatJshJ01LtCDnXHtW5uyc2gmkQMRlVzimKorJOQ1Kn6TuRV0LHPbdkjjykOJXUGstWOtidjW89Zo48lDXDhD5vcYrTlt2IcvR8Ew7b18jQAVakWMrdLZ9M7mWjatXrMCpptREDuLerVlsbkqyqlJUVZn+9W+sWbqW/OJ87hr8IKFAiEgoym+T5zDh9a+459Nb2e3Ang06/oyvf0t7bLqKjOlwytDj6LhTB959cDRrl6+nz8DenHbzibTd1i4nf+veUQmZLdGIxdSJ0xn6wqVV4xqbXvvvxGvznmbCG1+zeskaPnz6UwJJWtS5PK6UVbjpoFqBln8I4e/tGKh/COKyG3ertSHmzONmVVoBwU8Q/3GI/0i0NJUufKwwRwqxlRprXqy9iHM7xNU46yE1kdzzbc2Y4MSYTG6UzfnllTjB0SGhbF8cbe3CpDRRq9QWIsMJ3gOq5AoApM09MacXxg5b+cGRi+RfvwV/XWag66+rfjHXcojMQ8uGI/nXJu7g2R+cO8YucJXfKbetu+9NX5QvU8kah75q8RpuGHAna5etB4FAWbCa9okVtQiUB3n0kuGM+LWBQv1p3m85nA567te4TYAPOG5fDjhu32rbVi9Zw5I5y1k4Y1HyhVOFqw+8lZx8P0dfOIBBFx/R6LPkguJ8TrjSrlKc9O53LE/i0P35vgYvPKu1AV1zEkRXY4dE3LYAVtFztmRt8KvkmuFagQbGIt4D7GYN4SSl6I5iRPy2MuGmu5OE3R3gH9Qgu9NBxIUUPW5nUIRngrMjaq2Djf+wHY9Gwb0bUvjYFi3cWxVjYcPN9vtkb4HCx6vi/eLeDdp9avctjc61m0b4T876BUCNrrBDKAmEoGI0JHHoImIrXJY9BRX/sT8D3zFI/tWtogl11jj0f57yEMvmraxzYXDRb0saLOW624E9+Wl83c0t1FJ67t90Xd3DoTD3n/sU3/7nB9xeN+WbkjczCAfDLJ+/EoDn//46Uz6bxj8/TF7Y0Rgky3oB2Lh6U4NDLlo2vEbziDAQRjfcACVfxjmpmlQugpI679xaj2oEceSjbR6G9VfGnccNBfdWNaJuSsTV3U51JLac6/0aogttmVtn6oXpdNDoEthwExCsdsHSdVdC+0lIrDOQONtnfUZLIrV835K2LYy95MhB8m+A/BuawKaWJSsaXKxeupa5vyyo05mDLTSVqnFFXVz++Plp9dJ0OIUfP/6lQedIh5due4tvP/yRUCBM2YbypCqMNQmWB5k6YTq/T/mjyexypXDYlQ0zGkRgHEk7AVkb7CIYz0GgyT53H+I/3n6YMkfbAg3EaX7Ep35G7eYRjZCLXReqln0nEovbijgRV/cqZ64aQAMT0cBnVY0s0j52xRhIptAoQGD8Flqe2YiznX13luDGfOBPLgbX2skKhx4sD+JI45bU43Nz+FkHV2mR15dOO2/Pk5PvYd+j9iK3TU7Sjkdgx6+XzlvRoHOkw5jnxtctt5uEaMRixjfprwPUmxSfwRZEC+xMkKRYID57kbDwUeySfT92wZAXcs9FPHanoJSysY72dqFJ8MtY3nG8Q7fsC0Hgsy0wvm6s8v+gqw5EVx6AruyDtelh4uvuNPgturIfuuF6dMNN6Mp+WOWjazliDbSMpCmJGk1PcTLLkcJHbeEvyQXc9nfE3Tt1K8FWTlaEXDp034ZIqjJzgdyCHMLBMHsN2J1LHz1vi87Vbfcu/HvsPwC4ddA9TP7456TjnI6muxZWJIlTp4PL46Q4jf6iDSXVHZIVteV2GxS/95+ZRDHPaZenx/Q4xHcItP/SnnFqBeo5GEITsFb2s0vInZ3ZvOhZaaMPKbjd7mwUmWunMdZEy9HI3CZLVdPAxNiCbuzcGoayl1G1kIKhtgb7+kvjcuNjbLwF9fRGKhtY1IJ4+9sdgBI6JTnA+5fG+DMyGnF1sRuEBCfYoTf3HvYawRbNMrKXrHDo61ZsSKl3UtyhiBtfvpIO3dvToduWxSNrssNeXfnhk58T9GFcHhfb7Zh+qXN92XnfHZNqvdeGiN15qd+xtVQbbiG7HrgzUydMT9jefc8uDV6MlZxT0PDPdkeeyni5oxgpfKz6OEchxNrF6aaHId6JRedjd4jfD6zF4OyC5F2OeGLvhas7iC+xmERyENcODbI7Hezsm5oXkgqoeBXNvwqC/wVN5niiaMVoJP+Kuk/i3gt8A21pAS3HjrX4IGdIk2XvVKLWRrTifTuH3rUT4j8FcaYv8dBYiHjAd2SznzcTyYqQy4qFq1KWx29cs4m9B+ze6M4c4MjzD8XtTYyp+3K87HfM3o1+vkqufPICfHm+KifpdDnx5njY7S+7kNsmhw7dt+H/hh5Lu47FeHO8eP0eOu68PQ9/MaxRqldTcdkj5+LP9+OMKSc6nA58uV6ueupvDT6miANH4f1IuzFIwV1I0XNIu89SClipVkDZSyTOSIMgbhwln+NoO3KzMwfw9o+lAMbPX5y2VK9vYINtr5NoCoUMtewOTVYZSePfRGOSA3UjIkib++wLoO848J+AFD2Ho+DmBpudDhpdiq4eaOvUBMZC6dPo6iPQcP0mIobGpc7S/6aiPqX/f/62mAt2vTZp1V1uQQ7/Wf9yI1u3ma9HTeb+c5+0b91V8eX6+NdHN7HTPk03swNbS+XdB0czd+oCeuzVjcHXH8t2O1S/K1BVFs9eisvtqrWMvzFZvmAl7z38Eb//+Afd9+jM/11/HB13arjOSH3RyAJ0zQnJ48OObXG0T66DrtE16Ma77FkxGpN6vb1eolL1xVp7dqyoqQbSBmn/PUSXoKuPIUH1UXKQoucRz76J+2au6/vrAAAgAElEQVQI1rorITie6hekmBZO8dstZdZWQW2l/1nh0KORKCcVn0v5psQ46MDzDmHoC5dVjft61A98P/YnitoXcNQFA7aocrSSUDDMrO9m4/a56dl3x6pmEIbmR61ydOX+JK2+9PwFR9sXaowvA3FXCTZVft+bI8aqoWl2QU+8reKHvBtx5J4BgLXxQSh/NTZGbcVAT3+7M1IGx4GtFXsmxv4BcCDb/K9WgSzDlpH1Dh1g0jvfcv+5T1Y1QnY4hfyiPJ6b9hDFHYoIh8LccOgw5v1vIRWlATt90e1k6MjLqpocG1oH1sb7ofx1Enp3xgtrhX5GN9wai687wHc0UnBn8nLwJkRDv6CbHrD7lTq2QfKuRPxH1xjzgx2L1jDiOxa8f03e9SeDsFbsmyJd1I1sM63eMgqG9GkVDh3g9x/n8u7DH7Fi/kr2GrA7J159TJWy39jh43nmupcTGjL783y8u2JEgwqNDPVn/aoNPHPtS3wz6gcQ4eDB+3PJQ+dQUFx7EwHVsN213VG0Wdwq5VgLLXsOykbaTsW5A1JwK+K1L9waWYCuPp7qDt8Dnj442r60ZX+gAQBr472xi2r8/5sbfANxFDawUtuQFq3GodfG0AF3Mm1iYjuxnAI/w0bdSO9Dsl94J9MJh8Kcv8s1rFq0hmjETjN1uZ1s2609I6Y/kjITxip/Gzbdj70YGAHfEUibu6vpkaRCVRNCE9aGYVDxNon52T6k3YdbZTf4xkY1gK67GEJTNxciOLsibV9GHI0rn2yozhbJ52YL/rzkjR1UNWWBUENQVSa++TUfPjWO8k0VHDy4HydfO4ic/KbrS5otfPvhFDas2ljlzAEi4Shrlq1j8sc/J2jVAGhwEmy8m2px5sB4FE2ra3vSOHNkDkmLbcRtV58ah77FiPiQti+j4Zm20JWzG7j3zOi4/9ZAq3Hogy4+gqkTpifod+cW5LDzvo2XkfLkVS/w2UtfVJ1n6dzlTHzrG5756b6sD+uoKj988gufjPicYCDEgNP/wiFDDqwzxzwajbJy4WpmT/kjaVFUsDzEwhmLkzv00mdJXOAM2k7d2tCw2Z5nL7t/Zk1JAQ3Z3ecNjYa4e4G7Yf0HDI1Pq3HofY/ai+MuG8h/nvgEp8uJOASXx8XdY//RaFkpKxauYtwLE6oWZgFCgTCrFq1mwhtfc9QF2S2/+dzQlxk7/L9VF6vpX83iv699yb8/Tv0efvXBZB67dDiBsiCRUASH05FQUerN8dBx5xSpjdHlybeLC6y10ACHLjlnoeVvxjSvN1eO4juySdMUDYaWJqscetnGcia98x1rlqyl5/492OfwPaocjYhw4X1ncfzlRzJt0kwK2uaxzxF74nI33p8487vZdlFNoHqzhEBZkB/HTc1qh770j+V89Mxn1S5WgbIgM779nSmfTqPvUXsl7PP7lD+47+zHCZan1p1xupwUtM1PXcHq2QcCy0gssHGAs2Epp+JsD8Xvo5vutzXCJQ9yzkRyL2jQ8QyGbCFrHPrcqfMZesidRCNRAmVB/Hk+uu3emQc+v6NadWT7ziUcflYD23XVQdttkzc7drqdtO/crknO2Vz88vmvSJJZeKA0wPdjpiR16O89/BGhisROQA6HVLXI23/QPlz19N9SXlgl70o0OCFWKFTp1P2Qd/0W5TKLqwtS9FSD9zcYspG0YhEicqSI/C4ic0UkqeC2iJwiIjNFZIaIvNGYRqoqdw95hLIN5VXhgIrSAHOnLuD9R8Y05qlqZfeDd6Ggbb7tsOJwuZ0MuuSIZrOjKcgrysPhTFzQcrmdKVMOl89bkVSSwZ/n4/7xt/Nx4E3u/OCGWjsqiasLUjwKfMfEOvfshRQ+WlV4YzAY0qdOhy4iTuAp4CigF3CaiPSqMaYHcDNwoKruClzTmEauWLiKlYsSmyuEKkKMf2VSY56qVhwOBw9MuIOuu3XG6/fgz/NRUJzPbW9fR8ceybVHmgvLshh+46ucUHQ2R+ecztBD72Tln6vS3n+/Y/ZOGid3upwMPDd578k9D9kVdxLt+XAoQvc9u6a9diGuLjgKH8LRfhKO4rdtdUWDwVBv0gm59AXmquo8ABF5CzgemBk35kLgKVVdB6CqKxvTyMqu9slo7jT6Dt224bmpD7L0j+UEyoJ06dWxyZoj14erD7y1mkLjtC9mcPaOV/LGn8+k1XPUl+PlnnG3ctux9xIOhkFsudwbXrw8pU7MydcM4pMXJmCtLyMaU8P05Xo58aqjyS/K7vZmBkM2ko5D3x5YFPd8MVCz3f1OACLyDXZfqDtVdVyjWAix+HRyz92he/vGOk29qCmU1ZLM+9+CpHK70UiUJ68cye3vptcMeJf9evD20uHM/G424WCYXQ/cudZUzKJtCnn25wd49a53mfLpVNq0y2fwdcdx6OkHNfhvMRgMDaexFkVdQA+gP9AR+FJEdlfV9fGDROQi4CKAzp3rFu+vZMXCVTFti8QmF8uasHNQtvDFO9+mfG3apMTq2dpwupzs/pdd0h5f0rGY64ZfUq9zGAyGpiGdIOcSoFPc846xbfEsBkaralhV5wOzsR18NVR1uKr2UdU+JSUlaRspIogjeQVassyMrY0O3VPfLRSW1K6LUhuqygePjWVIp4s5Jud0rj34trR6lm5YvZHxr0xi/KuT2Lh2U4PPb2heVBWNLketdS1tiqGBpOMNfwR6iEg3sfPIhgA1mx7+B3t2joi0ww7BzGssI7fpUsI2XRIvAF6/h4Hn9m+s02QtA8/tj8udPI5/zrBTG3zcETe9xshb3mTNkrWEAmGmf/0bQ/vfwYIZi1Lu89krX3B650t44ooRPHH5CE7vdAkT3/6mwTbUB1VFNZiyGYohNRqagq4+DF11OLryIKw1Z6LRRl0KMzQDdTp0tVuVXwF8CswC3lHVGSJyl4gcFxv2KbBGRGYCE4EbVDUxLWULuO3ta8krysWX57M75eT52GnfHTnx6mMa8zRZicPh4KEvhuHxx3VXEjjpmmM4eHC/Bh2zfFMF/3liXIJ6ZSgQ4vV/vZd0n5V/ruKxS4YTCoSpKA1QURogWBHiwfOeZs2ypp31WeWj0VV/QVfsia7si1U6wjj2NNHoUnTdBbbODUEgDOGf0LVnmfcwy0grhq6qHwMf19h2e9xjBa6L/TQJ3Xbvwht/PstX733P6iVr6dVvJ/bsv6sRA4rRq9/OjC17g18m/Mra5es58IR98eUkFyxLh+XzV+LyOAnVkFmxLGXOz8lvvia98x1qJXEAAl+9/z0nXHFUg+2pDQ38FzbeyuZmzBug9AkUC8m7qEnO2ZrQ8rdiMgnxRMFaAeEpkMGdkwzVyZpKUQB/ro8jzunf0mZkNHsdunujHKekUzHhYKJioQh03qVj0n1CwTCRSOLCdTQSJRxIrChtLLT0UZI2Yy57Ds29ALuUwpCS6EIg2ecjqbV2mgjVEAQ+Q0OTwbk94j/JlnIwpIVZUTQkJb8oj8PPOhhvTvXye4/fwxm3nJx0n/2O3jtpYYAVsejbhE21iS5Ovl0rkvceNVTH3RdIIv+sEXA3Xx8BtUrRNSfZnaYq3obSJ+3G06HG65vQ2jEOPUOIhCN8P+Ynxo2cwOI5y1raHACufOpvHH/5kfhyvYhD6LhTB4aNupGd990x6fg1y9bhSFJk5XQ5WLO0CWPozu7Jt0s+yOaWc2ptRCs+Qis+NJkccYj/BHAUAXFrMPjAd1izNgPRspEQWQhUXoRDoOXo+utMLD9Nsirk0lpZOGsxQw+5k1AghBW1sKIWA844mGuHX9yiawQut4sL7zuLC+45g0g4isfrrnX87z/MJRpODLlYljL7x7nsPaBxwkE1kfyh6LpLqB528UH+dVW9Oa2KcbDhBluWVxWIogV34cg5sUlsyibEkQvtPkBLn4LAeBAf5JyB5JzZvIYExlK9pV0Ma4MdFnJ1bV57shAzQ29hVJU7jr+PDas2UL6xgkBZkFAgzMS3vmbim1+3tHmAnUVTlzMHO+7uy02sLPX6PZR0ajo1SvEegBQ9A65dAC84O0PB3Thy7JRNja62nTlB0DLsGWAQNt6ORmuWVGydiKMtjoLbcLT/EkfJZzhyz2n+tYeU6ppWLa8Z4jEOvYX5c9Zi1ixblxB6DpQF+ejZz1rGqAby11MOwOVxEX9TISK4fW4OOqlvk55bvAfiaPchjm1/xVHyXxw5x25+MfgpkOxOx4LAJ01ql6EeeI9Ovt3RFnGmaJBiqIZx6C1MKBBOWe0arEjdOCITycn38/Cku+iya2fcXjdur5vue3ThkS//2bLt+TRIYgMNgChqJbbMq7artRYNTkLDM00ct6mJLiPphdfahGrTZUm1JkwMvYXpvkcX3B4XFTW2e/0eDhlyYIvYtCV0260zz//vIdYsW4cIaSk9Njne/rApWcNpD+I7NOkuqopuehjKX4rd7kfA2QmKRpo0uqYi/A1JRfjEisXQky/GGzZjZugtjNPl5KZXr8Sb48UV0xb35fno3Ksjx102sIWtazjFHYoyw5kD4uoOuecBPuyvvAB+yPk/u8lxMoKfQsUr2HH3TXYKZOQPdP0VzWb3VoejOPl2jYBkxncp0zEz9Axg3yP3YsT0hxk3cgJrlqxlnyP25KCT9mvUfqiNxeyf/uDlO95h/v8W0qnndpx1xynsdmDPljarThz516HeAWjFh4CF+AeBO0WfU0DLXrKdeDWiEJ6FRpc2a0xXrTK0YgxEZoFrZ8R/LOJofXrzknsBuv5GqHa/6gbPfogzhbM3VENaKi7Yp08fnTLFFAxkE9O/+Y2bBv6LUEWwahHX6/dwx/tD2ffIxJ6j2Yy16iiIJlGWlFyk7ZuIu3kuYhpdhq45GawybEfnB/Ejxe8hruQVu9mMVfoslD4dSy8Ng7s3UvQk4mjT0qZlDCLyk6r2SfZa5k0BmxlVZeZ3s1kyZxldd+vETvvs0Czn/OXzX/n0pS+IRqMcetpB7D9on7RbtrUUz17/coJYV7AixFNXv8hLv7cuh47vMChbBNRcmHY1ayxXN94F1lo2L+pWgAbRjXcibUc0mx3NhSPvEjTnTIjMAUdJq7xoNSVbtUMvXV/GDQOGsXj2MioXY3bqswN3j/0Hvpymy8p4bujLjB3+36qG15PH/MT+g/bhH29ck9FiY/OmLUi6fencZUQj0YxoxddYSO4FaMXomDMNYsfePVBwFyLN+G8T/JLEDB0LQt+gqhn9fWko4sgDTyubIDQTmT0lbGIev3wEC2YsIlAWIFAWJFAW5LfJc3jx1jeb7JyLfl/CR8+Or3LmYOecfz/mJ2Z881uTnbcxKGiXvFmGP9+Pw9m6vkriKETajYG8q8DTD/wnIMVv4fA3jWJkalJdJFvPxbM2VENYZa9hrTkVa+05aGCcSR+thdb1X1gPLMviq/e+JxKqrigYCoT57KUvmuy8Uz6dllTAKlAW5PuxPzfZeRuDIX8/AW+NOxdvjpeTrhnUSmeK+TjyLsTR9mUcbe5NnRHTlPiPobrGCvZz38BW+Z7HoxpB154Jmx6A8C8Q+g5d/3d047CWNi1j2WodulpKNJqoOwLYXe+bCH++P6mAldvjIrcgieJdBnH85Ufyf0OPxZvjxZ/nw+v3MOiiwzjztuTqiw1FrU1Ymx7CWjUAa/UxWGWvo5r8s2rtSP7NdsxecgCv/dvVDSm4vc59s57gfyEym+pZLxVQ8T4aWbjFh7c7XLWu2f5WG0N3upzs2m9nZnz7W7UJs8Mh7HtU08XvDjqxL09d9ULCdofTwaGn/6XJztsYiAjn3HkqQ/5+AqsWr6V4uyL8uQ1vopEM1SC6ZjBEl1C1ILnpfjQ8BSlMVhzUuhFHART/B0I/2AuFrh3sND5p/XMxDX6dQv7YAaEfwdWlYce11qIb7rQvGCjqPRgpGIY4U/fmzRZa/7eiFq4ZfjG5bXLx+G3hH2+Ol4LifC59+JwmO2deYS7DRt1IToG/6seb4+WGl65I2jc1E/H6vXTs0aHRnTkAFWPBWk717JIKCHyORupuUF2Jagit+BBr3ZVYG+5Aw7Ma3dTmQkQQ735I7pmIt99W4cyBWKFRElE4ccTkfuuPahRdMyTmzCNAFIKT0DWDUa1dBiIb2Gpn6ABddunIS7MfZ9zICcz/9U926rMDA8/tT26b3Lp33gL2PmwP3l0+gqkTZxCNROl9yK748zI73NJcaOj7JAU92P/EoWn2DLWuY2gIXXs6hOdg36470IpRaMEdOHIaNzxkaDrEPxgte5HEbkoe8Dbwbjb4JVirsJ15JRZoKQTGgf+Ehh03Q0jLoYvIkcBj2EvrI1T13hqvnws8AFRqkT6pqlmRJNumXQGn3tj8H6LH56FvE4Z2shZnR8BDYv63gHObtA6h5aPinDnYaX8B2HgX6jsKceQ0mrmGpkNcnaDwMXTDUOy0YgukECl6DmmonG50XkysrQZajobnIFk+r6rToYstivwUcDiwGPhRREar6swaQ99W1awUuoiEI5SuLyO/bR5O59aRDpapSM4paPkLNTSaHCBtwLN/egcJfgIJcmeAOO1sCW/2iZ5trYjvEPB+D+HpIF5w7bJl2T2uHe3j1GyKLTmIe+ctMzYDSCcY1xeYq6rzVDUEvAUc37RmNQ+qyqv/fJeTis/j9M6XcnLJ+Xzw+NiWNmurRpzbIkUjwNEBW0zLA65dkeLX02+4IPkpXtBqLekM2YGIG/Hshbh7bXmqpucgcGxL9bms054w+LJXDK+SdEIu2wOL4p4vBvZLMu5kETkYmA1cq6qLag4QkYuAiwA6d+5cf2sbmbfv/5C37/uwqpw9HAzz4j/eJLcgh4HnHtKiti39YznvPfQRc36ZT4+9uzH4umPZbofsX4VPB/HsCyVfQHQRiBdJM9RStX/OaWjwSxJm6ZIP7j0azU5D9iHihOI30Y3/tmPmWOA9FCm4FZEW1OxvJOoU5xKRwcCRqvq32POzgP3iwysiUgyUqmpQRC4GTlXV5ELTMVpanEtVOan4PErXlyW8tm239rz6x1MtYJXNnJ/ncV3/OwgHwlUl9R6fm4e+GEaPvVM0RDZUwyp9CkqfiWmZqy1oVfQy4u7R0qYZDFtEbeJc6YRclgCd4p53ZPPiJwCquka1aqVhBJBalzRDiIQjlG1IluNK03aoT4MnrhhBoDRANGIX00QjUSpKAzx5ZWL+emtErVKsTY9hrRqItfo4rLK3UU3WcSg1jrzLkZIvkDZ3I4VPIiVfbrEzV6scq/RJrFVHYq0+FqvsNbRmLNZgaEHSCbn8CPQQkW7YjnwIcHr8ABHpoKrLYk+PAzIy6TccCvPyHe8w5tnPqCgN4HQ7E0r/Abr02r4FrNvMbz/Mrdf21oRdWPR/EF1MVQf4Tf9Gwz8ihQ/W72COInD1ACnYYkEt1TC69jSIzIuz6wE09B1S1HJ3cwZDPHV+y1U1IiJXAJ9ipy2OVNUZInIXMEVVRwNXichx2Mmda4Fzm9DmBvPAeU/zzX9+IBTr1WlFE2d9Xr+Hix44u7lNq4Y/z0f5xsQsDX9eExTyJKGiLIAVtcgtaIH0vsDHYC2jymnaFkHgUzRymd19KA2sivGw8Vb7OBpB3XsihY83vFFC8L92G7SadgW/QsMzW0bnxWCoQVrTFlX9GPi4xrbb4x7fDNzcuKY1LquXrOGbUZMJBaoXKTicQn5RHtGoRZdeHTn/7tPZ4+CW/eccdNHhfPjUuGpNoj1+D4MuOaJJz7tm2ToePO8pfpk4HRS679GZG168nG67N6zEuiFo8Lvk5d7ihNBUSMOha3gmbLgeiKv8C/+CrrsAafefBtr1Q4oydCA8FYxDN2QAW02l6JI5y3F73QkO3YoqHXbYlie++3cLWZbIuf8awspFq/n2wx9xe92Eg2EOOH5fzhl2SpOdMxqNct3Bt7Fi4SqiEfvOZc7P87n2r7fzytwnKWibKhWwkXFuT+rCovSaM2v5K0n2j0BkPhr+rWHdhpwdAC/VZ+jYFxqHaRptyAy2Goe+fY9tE5w52CJdO/bu2vwG1YLb4+aWN69l1eI1LJmzjO17dKCkY9P2VPzl8+msW7mhyplXEglG+OzlLxh87bFNev5K7MKikUkKiwpsXfJ0iCwhsSkEtvO1VgL1d+jiPxEte7qGXQLiB+/B9T6ewdAUbCUqP9Bu+2IOPLFvlRBXJW6fm8HXN4+zqi8lHYvpfchuTe7MAZbNW4EVSXSCwYoQi39flmSPpkGcHZDC52KzXj/gBVdPpO1r6RcWeQ+w96uJhsG9WwPtKkGKXogVPFXa1QNp+3rDy9ANhkYmq2booWCYyWN/Zs2StezSbyd27lO//p83vnQ5L93+NmOfG0/5pgp69u3BFU+cz/Y7dmgii7OHHffqhjgSq/B8uV522b95c7fFuz+UfGkvQooXcW5Xv/1zTkfL34i1j6u8K/NDzpmIo23D7fLsEyt4WgjiRpwtmw1lMNSkzsKipqK+hUWLZy/l2oNvJ1gRJBKK4nA62LN/L4aNuhGXO6uuSxmJqnLDgGHM+n52VWjK6XbSbru2vDDzEbz+7KqiU2stWjrczk5xtEFyzgPfMa2+y4+h9VNbYVHWOPSLew9l/q9/Vusw4s3xcP7dp3PS1cc0hYlbHaFAiNf+9R6fvjiRSCjKgSf25fy7T6OwpE1Lm2YwGGJkvUNfuWg15+18VdJFzS69OjJi+tbXycZgMGydbGnpf4sTDUdT3ipHwltnr0mDwWCoSVY49G27tado28KE7R6fmwFnZHYfToPBYGgussKhiwi3vHkNOfn+qrRDf56PTj23z9iUQ0P2o6FpWGv+D2t5L6wV+2OVPldvkTCDoTnJmvSQnn178MofT/L561+xYuEqdjtoFw44rg9Ol+kwZGh8NDwbXXs2VZrquhZKn0atVUjBrS1qm8GQiqxx6GD3/zQZLYbmQMueJqHMnwoofxvNuxpxNJMUgsFQD7LKoRtaJ2qttwuBgt+Da3sk59yW7+8YnkVy+QC33UnJYcS4DJmHceiGFkWjq9E1x4O1EQhC2IFWjIXCRxFfrU2vmhbXThBdQA3xFls+wFSIGjKUrFgUNbRetPQZsNaxObxhAQF04y0tugApeZeSqAfjA/8JiMMUWhkyE+PQDS1LcCJ2X5QaWOUQ/bPZzalE3L2QtiPsmTqA5EHueUjBHS1mk8FQFybkYmhZHAVJQ9UQBWnZhUfx9EXajUHVQsTMfQyZj/mWGloUyT0XW442Hhd49ml4u7hGxjhzQ7aQ1jdVRI4Ukd9FZK6I3FTLuJNFREUkqc6AwZCA73jIGQJ47LAGflv/vNDo8xgM9aXOkIvYXQWeAg4HFgM/ishoVZ1ZY1w+cDUwuSkMNbRORAQpuBnNvRAiM8GxTcunLBoMWUo6M/S+wFxVnaeqIeAt4Pgk4/4J3Ee1zrwGQ3qIsx3iPdg4c4NhC0jHoW8PLIp7vji2rQoR2RvopKpjG9E2g8FgMNSDLV7tEXvF6GHg+jTGXiQiU0RkyqpVq7b01AaDwWCIIx2HvgToFPe8Y2xbJfnAbsAXIrIA2B8YnWxhVFWHq2ofVe1TUlLScKsNBoPBkEA6Dv1HoIeIdBO7vfkQYHTli6q6QVXbqWpXVe0KfA8cp6rp95czGAwGwxZTp0NX1QhwBfApMAt4R1VniMhdInJcUxtoMBgMhvRIq1JUVT8GPq6x7fYUY/tvuVkGg8FgqC+mBM5gMBhaCcahGwwGQyvBOHSDwWBoJRiHbjAYDK0E49ANBoOhlWAcusFgMLQSjEM3GAyGVoJx6AaDwdBKMA7dYDAYWgnGoRsMBkMrwTh0g8FgaCUYh24wGAytBOPQDQaDoZVgHLrBYDC0EoxDNxgMhlaCcegGg8HQSjAO3WAwGFoJxqEbDAZDKyEthy4iR4rI7yIyV0RuSvL6JSLyq4hMFZGvRaRX45tqMBgMhtqo06GLiBN4CjgK6AWclsRhv6Gqu6tqb+B+4OFGt9RgMBgMtZLODL0vMFdV56lqCHgLOD5+gKpujHuaC2jjmWgwGAyGdHClMWZ7YFHc88XAfjUHicjlwHWABzi0UawzGAwGQ9o02qKoqj6lqjsAfwduTTZGRC4SkSkiMmXVqlWNdWqDwWAwkJ5DXwJ0inveMbYtFW8BJyR7QVWHq2ofVe1TUlKSvpUGg8FgqJN0HPqPQA8R6SYiHmAIMDp+gIj0iHt6DDCn8Uw0GAwGQzrUGUNX1YiIXAF8CjiBkao6Q0TuAqao6mjgChE5DAgD64BzmtJog8FgMCSSzqIoqvox8HGNbbfHPb66ke0yGAwGQz0xlaIGg8HQSjAO3WAwGFoJxqEbDAZDKyGtGLrB0JioKnN+nsfSucvptkcXuuzSsaVNMhhaBcahG5qV0vVl3DTwXyycuQiHw0E0EqX3obtxx/tDcXvcLW2ewZDVmJCLoVl57NLh/DFtAYGyIOWbKghWhPhlwnRe/+d7LW2awZD1GIduaDYi4Qhfj/qBSChSbXuoIsTY5z9vIasMhtaDceiGZiMaiWJFraSvBSuCzWyNwdD6MA7d0Gx4/V6679klYbvDIex75F4tYJHB0LowDt3QrFz//KX48/24vfYCqMfvIb9tPhfdf1YLW2YwZD8my8XQrOy4VzdGznqUMc9+xoLpi9hl/x4c9bcBFLTNb2nTDIasxzh0Q7PTbru2nHvXkJY2w2BodZiQi8FgMLQSjEM3GAyGVoJx6AaDwdBKMA7dYDAYWgnGoRsMBkMrwTh0g8FgaCUYh24wGAytBOPQDQaDoZVgHLrBYDC0EkRVW+bEIquAhWkObwesbkJzGotssROyx1ZjZ+OSLXZC9tja3HZ2UdWSZC+0mEOvDyIyRVX7tLQddZEtdkL22GrsbFyyxU7IHlszyU4TcjEYDIZWgnHoBoPB0ErIFoc+vKUNSJNssROyx1ZjZ+OSLXZC9tiaMXZmRQzdYNp0u/IAAAY7SURBVDAYDHWTLTN0g8FgMNRBxjt0ETlSRH4XkbkiclNL21OJiIwUkZUiMj1uW1sRGS8ic2K/i1rSxphNnURkoojMFJEZInJ1JtoqIj4R+UFEpsXsHBbb3k1EJsc+/7dFxNOSdlYiIk4R+UVExsSeZ6qdC0TkVxGZKiJTYtsy6rOP2VQoIu+JyG8iMktE+mWanSKyc+x9rPzZKCLXZJKdGe3QRcQJPAUcBfQCThORXi1rVRUvAUfW2HYT8Lmq9gA+jz1vaSLA9araC9gfuDz2HmaarUHgUFXdE+gNHCki+wP3AY+o6o7AOuCCFrQxnquBWXHPM9VOgENUtXdcal2mffYAjwHjVLUnsCf2e5tRdqrq77H3sTewD1AOjCKT7FTVjP0B+gGfxj2/Gbi5pe2Ks6crMD3u+e9Ah9jjDsDvLW1jEps/BA7PZFuBHOBnYD/sgg1Xsu9DC9rXEfsf91BgDCCZaGfMlgVAuxrbMuqzB9oA84mt6WWqnTVsOwL4JtPszOgZOrA9sCju+eLYtkxlG1VdFnu8HNimJY2piYh0BfYCJpOBtsbCGFOBlcB44A9gvapGYkMy5fN/FLgRsGLPi8lMOwEU+ExEfhKRi2LbMu2z7wasAl6MhbFGiEgumWdnPEOAN2OPM8bOTHfoWYval+uMSSESkTzgfeAaVd0Y/1qm2KqqUbVvZzsCfYGeLWxSAiIyCFipqj+1tC1pcpCq7o0dtrxcRA6OfzFDPnsXsDfwjKruBZRRI2yRIXYCEFsfOQ54t+ZrLW1npjv0JUCnuOcdY9sylRUi0gEg9ntlC9sDgIi4sZ3566r6QWxzRtoKoKrrgYnYoYtCEXHFXsqEz/9A4DgRWQC8hR12eYzMsxMAVV0S+70SO97bl8z77BcDi1V1cuz5e9gOPtPsrOQo4GdVXRF7njF2ZrpD/xHoEcsg8GDf5oxuYZtqYzRwTuzxOdjx6hZFRAR4AZilqg/HvZRRtopIiYgUxh77seP8s7Ad++DYsBa3U1VvVtWOqtoV+/s4QVXPIMPsBBCRXBHJr3yMHfedToZ99qq6HFgkIjvHNg0AZpJhdsZxGpvDLZBJdrb04kIaiw9HA7Ox46m3tLQ9cXa9CSwDwtgzjAuwY6mfA3OA/wJtM8DOg7BvAf8HTI39HJ1ptgJ7AL/E7JwO3B7b3h34AZiLfYvrben3NM7m/sCYTLUzZtO02M+Myv+fTPvsYzb1BqbEPv//AEUZamcusAZoE7ctY+w0laIGg8HQSsj0kIvBYDAY0sQ4dIPBYGglGIduMBgMrQTj0A0Gg6GVYBy6wWAwtBKMQzcYaiAiXeNVNOux37dx+5/e+JYZDLVjHLrBsIVUVoiq6gGxTV0B49ANzY5x6IasIzYD/k1EXo9pZ78nIjkiMiAm7vRrTK/eGxu/QETuj23/QUR2jG1/SUQGxx23NMW5vhKRn2M/B8S2949tH41d1Ri//73AX2Ka2deKyJci0jvumF+LyJ5N9gYZtlqMQzdkKzsDT6vqLsBG4DpsjfpTVXV3bMGnS+PGb4htfxJbLTFdVgKHqy1wdSrweNxrewNXq+pONfa5CfhKbe3sR7ClF84FEJGdAJ+qTquHDQZDWhiHbshWFqnqN7HHr2Hrf8xX1dmxbS8D8cqCb8b97leP87iB50XkV+yS/vgGKz+o6vw0jvEuMCgmknY+9oXHYGh0XHUPMRgykpqaFeuxNTXSGV/5OEJsUiMiDiBZ27hrgRXYXXQcQCDutbK0DFUtF5HxwPHAKdjdbgyGRsfM0A3ZSmcRqZxpn44t7NS1Mj4OnAVMiht/atzv72KPF7DZuR6HPRuvSRtgmapasWM607BtE5BfY9sI7HDNj6q6Lo1jGAz1xjh0Q7byO3bDhlnYynyPAOcB78bCIxbwbNz4IhH5H3Yv0Gtj254H/ioi07DDMMlm3E8D58TG9Ewxpib/A6JiN7y+FkDthhgbgRfr92caDOlj1BYNWUesld4YVd0tzfELgD6quroJzarLhu2AL4Cesdm+wdDomBm6wdDEiMjZ2H1cbzHO3NCUmBm6wWAwtBLMDN1gMBhaCcahGwwGQyvBOHSDwWBoJRiHbjAYDK0E49ANBoOhlWAcusFgMLQS/h/tK7vRTXDSTAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "\n", "from sklearn.cluster import KMeans\n", "kmeans = KMeans(n_clusters = 2)\n", "kmeans.fit(X)\n", "labels = kmeans.predict(X)\n", "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", "plt.xlabel('danceability')\n", "plt.xlabel('popularity')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Result: 143 out of 286 samples were correctly labeled.\nAccuracy score: 0.50\n" ] } ], "source": [ "\n", "labels = kmeans.labels_\n", "\n", "correct_labels = sum(y == labels)\n", "\n", "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", "\n", "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ] }