{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Pumpkin Pricing\n", "\n", "Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data: \n", "\n", "- Only get pumpkins priced by the bushel\n", "- Convert the date to a month\n", "- Calculate the price to be an average of high and low prices\n", "- Convert the price to reflect the pricing by bushel quantity" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", "

5 rows × 26 columns

\n", "
" ], "text/plain": [ " City Name Type Package Variety Sub Variety Grade Date \\\n", "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", "\n", " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", "0 270.0 280.0 270.0 ... NaN NaN NaN \n", "1 270.0 280.0 270.0 ... NaN NaN NaN \n", "2 160.0 160.0 160.0 ... NaN NaN NaN \n", "3 160.0 160.0 160.0 ... NaN NaN NaN \n", "4 90.0 100.0 90.0 ... NaN NaN NaN \n", "\n", " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", "0 NaN NaN NaN E NaN NaN NaN \n", "1 NaN NaN NaN E NaN NaN NaN \n", "2 NaN NaN NaN N NaN NaN NaN \n", "3 NaN NaN NaN N NaN NaN NaN \n", "4 NaN NaN NaN N NaN NaN NaN \n", "\n", "[5 rows x 26 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from datetime import datetime\n", "\n", "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", "\n", "pumpkins.head()\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
MonthVarietyCityPackageLow PriceHigh PricePrice
709PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
719PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7210PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
7310PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
7410PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
\n", "
" ], "text/plain": [ " Month Variety City Package Low Price High Price \\\n", "70 9 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 15.0 \n", "71 9 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 18.0 \n", "72 10 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 18.0 \n", "73 10 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 17.0 \n", "74 10 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 15.0 \n", "\n", " Price \n", "70 13.636364 \n", "71 16.363636 \n", "72 16.363636 \n", "73 15.454545 \n", "74 13.636364 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", "\n", "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", "\n", "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", "\n", "month = pd.DatetimeIndex(pumpkins['Date']).month\n", "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", "\n", "new_pumpkins = pd.DataFrame(\n", " {'Month': month, \n", " 'DayOfYear' : day_of_year, \n", " 'Variety': pumpkins['Variety'], \n", " 'City': pumpkins['City Name'], \n", " 'Package': pumpkins['Package'], \n", " 'Low Price': pumpkins['Low Price'],\n", " 'High Price': pumpkins['High Price'], \n", " 'Price': price})\n", "\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", "\n", "new_pumpkins.head()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A basic scatterplot reminds us that we only have month data from August through December. We probably need more data to be able to draw conclusions in a linear fashion." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 7.5, 8. , 8.5, 9. , 9.5, 10. , 10.5, 11. , 11.5, 12. , 12.5]),\n", " )" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEFCAYAAAD69rxNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdY0lEQVR4nO3df5TV9X3n8eebEXSiGCQOFBCchiXkbKVCcyMom7OomWDU6GhrUiqWNllxd+s5cW1JoZI0OcGjLYlmt03T1caWHqzG07Cjje7SWSqbjSskgxBHoxxigpiRA5MYKpoxkuG9f3y/M7ncuXfm+5253/v9cV+Pc+bc+33f73DffGDe872f7+eHuTsiIpI/k9JOQERExkcFXEQkp1TARURySgVcRCSnVMBFRHLqtEa+2bnnnuvt7e2NfEsRkdzbs2fPj929rTLe0ALe3t5OT09PI99SRCT3zOzlanF1oYiI5JQKuIhITqmAi4jklAq4iEhOqYCLiORUQ0ehSPK69vaxeft+Xj02wOxpraxbuZDOJXPSTktEEqACXiBde/vYsK2XgRODAPQdG2DDtl4AFXGRAlIXSoFs3r5/uHgPGTgxyObt+1PKSESSpAJeIK8eG4gVF5F8UwEvkNnTWmPFRSTfVMALZN3KhUyeZKfEJk8y1q1cmFJGIpIkFfCisTGORaQwIhVwMztoZr1mts/MesLYdDPrNrMD4eM5yaYqY9m8fT8nBk/d4/TEoOsmpkhBxbkCv9TdF7t7KTxeD+xw9wXAjvBYUqSbmCLNZSJdKNcCW8LnW4DOiacjE6GbmCLNJWoBd+CfzWyPma0NYzPd/TBA+DgjiQQlunUrF9I6ueWUWOvkFt3EFCmoqDMxl7v7q2Y2A+g2sxejvkFY8NcCzJs3bxwpSlRDsy01lV6kOZi7j31W+TeYfRZ4A7gZWOHuh81sFrDT3Ue91CuVSq4deURE4jGzPWX3H4eN2YViZmea2dSh58CHgOeAx4A14WlrgEfrl66IiIwlShfKTOB/mNnQ+f/g7v/LzL4DPGJmnwAOATckl6aIiFQas4C7+w+AC6vEfwJcnkRSIiIyNs3EFBHJKa0HXjA33v80T7302vDx8vnTefDmi1PMSESSoivwAqks3gBPvfQaN97/dEoZiUiSVMALpLJ4jxUXkXxTARcRySkVcBGRnFIBL5Dl86fHiotIvqmAF8gNpXlUbMjDJAviIlI8KuAFsnn7fk5WLG1z0tGGDiIFpXHgBaINHeLruGcnB46+OXy8YMaZdN++Ir2ERGLQFXiBaEOHeCqLN8CBo2/Scc/OdBISiUkFvEDWrVxYtQ9cGzpUV1m8x4qLZI0KeIH0vPxa1T7wnpc1kUekiFTAC+Sh3a/EiotIvqmAF8hgjd2VasWb3YIZZ8aKi2SNCniBtJjFije77ttXjCjWGoUieRJ5GKGZtQA9QJ+7Xx3ujXkz0B+e8ifu/kT9U5SoVi2dy9Zdh6rGpToV63i69vZp0+wMiTMO/JPAC8DZZbF73f0L9U1JxmtT5yIg6PMedKfFjFVL5w7HRSaia28fG7b1MnBiEIC+YwNs2NYLoCKekkgF3MzOA64C7gRuTzQjmZBNnYtUsCURm7fvHy7eQwZODLJ5+34V8JRE7QP/EvAp4GRF/FYze9bMHjCzc6p9o5mtNbMeM+vp7++vdoqI5IBm+mbPmAXczK4Gjrr7noqXvgLMBxYDh4EvVvt+d7/P3UvuXmpra5toviKSEs30zZ4oV+DLgWvM7CDwMHCZmW119yPuPujuJ4H7gYsSzFNEUrZu5UJaJ7ecEmud3KKZvikas4C7+wZ3P8/d24HfBv7F3Veb2ayy064DnksoRxHJgM4lc7jr+kXMmdaKAXOmtXLX9YvU/52iiaxG+Odmthhw4CBwS10yEpHM6lwyRwU7Q2IVcHffCewMn9+UQD4iIhKRZmKKiOSUCriISE6pgIuI5JQKuIhITqmAi4jklAq4iEhOaVf6gtFyn/G0r398ROzg3VelkEk+bOzq1WqXGaIr8AIZWu6z79gAzi+X++za25d2aplUrXiPFm92G7t62brr0PAOT4PubN11iI1dvSln1rxUwAtktOU+RSZKe65mjwp4gWi5T0mS9lzNHhXwAtFyn5Ik7bmaPSrgBaLlPiVJtfZW1Z6r6VEBLxAt9xlPrdEmGoVS3abORaxeNm/4irvFjNXL5mkUSorMG9h/VSqVvKenp2HvJyJSBGa2x91LlXFdgYuI5FTkiTxm1gL0AH3ufrWZTQe+BrQTbOjwUXf/aRJJSnSayBPPr65/nPLPoAb8UF0oNS29s5sjx98ePp45dQq77+hIMaPmFucK/JPAC2XH64Ed7r4A2BEeS4o0kSeeyuINwfZSv6qJPFVVFm+AI8ffZumd3SllJJEKuJmdB1wF/E1Z+FpgS/h8C9BZ39QkLk3kiafW3R+Naq6usniPFZfkRb0C/xLwKeBkWWymux8GCB9nVPtGM1trZj1m1tPf3z+hZGV0msgj0lzGLOBmdjVw1N33jOcN3P0+dy+5e6mtrW08f4REpIk8Is0lyhX4cuAaMzsIPAxcZmZbgSNmNgsgfDyaWJYSiSbyxFNr/qDmFVY3c+qUWHFJ3pgF3N03uPt57t4O/DbwL+6+GngMWBOetgZ4NLEsJRJN5Innh3dfNaJYaxRKbbvv6BhRrDUKJV2xJvKY2Qrgj8JhhO8CHgHmAYeAG9z9tdG+XxN5RETiqzWRJ9aGDu6+E9gZPv8JcHk9khMRkfg0E1NEJKcyv6WaZhbG8947nuCtwV92i53RYrx455UpZpRt2iJM8izTV+CaWRhPZfEGeGvQee8dT6SUUbZpizDJu0wXcM0sjKeyeI8Vb3baIkzyLtMFXDMLJUnaIkzyLtMFXDMLJUnaIkzyLtMFXDML4zmjpXrhqRVvdtoiTPIu0wVcMwvjefHOK0cUa41CqU1bhEneZX4YYeeSOSrYMahYx1M6fzpPvtjPq8cG+JV3nkHp/OlppyQSWeYLuEhShoapDo10GhqmCuiiQXIh010oIknSMFXJO12BF0x7le3ADmp1vao0TDU+zYzOFl2BF0i14j1avNlpS7V4NDM6e1TARSQSdTlljwq4iESiLqfsibIn5hlm9m0z+66ZPW9mnwvjnzWzPjPbF35p/JpIgWlmdPZEuQL/OXCZu18ILAauMLNl4Wv3uvvi8EtL3okU2LqVC2mZdOpEsZZJppnRKYqyJ6a7+xvh4eTwS/d5Mmj5/OqTUGrFReLoefk1Bk+e+qM/eNLpeXnUnRQlQZH6wM2sxcz2Eew83+3uu8OXbjWzZ83sATM7J7EsJZKnXqr+g1QrLhKHlt/NnkgF3N0H3X0xcB5wkZldAHwFmE/QrXIY+GK17zWztWbWY2Y9/f39dUpbRBpNy+9mT6xRKO5+jGBT4yvc/UhY2E8C9wMX1fie+9y95O6ltra2CScsIunQ8rvZE2UUSpuZTQuftwIfBF40s1llp10HPJdMihKV+sAlSVp+N3uiXIHPAp40s2eB7xD0gX8D+HMz6w3jlwL/JcE8JQL1gUuStu46FCsuyRtzLRR3fxZYUiV+UyIZiYhIJJqJKSKSUyrgIiI5pQIuIpJTKuAiIjmlAi4iklMq4CIiOaUCXiBnn94SKy4Sx8ypU2LFJXkq4AVyTY29CWvFm92XPrY4VrzZ7b6jY0Sxnjl1Crvv6EgpI9GmxgUy2mpxmzoXNTib7Ku1Fdjm7fu1UW8NKtbZoivwAtFqcfFoizDJOxXwAqm1JpzWiqtOW4RJ3qkLpUDeMaWFN98erBqXkdatXMhtX9tXNS7Vbezq5aHdrzDoTosZq5bOVfdcinQFXiDVivdo8Wb3ma7eWPFmt7Grl627Dg13yQ26s3XXITaqvVKjAi5N6/WfV//FVive7LSlWvaogItIJLpJnj0q4CISibZUy54oW6qdYWbfNrPvmtnzZva5MD7dzLrN7ED4qF3pU6ZRKPFo5mo82lIte6Jcgf8cuMzdLyTYgf4KM1sGrAd2uPsCYEd4LCmq9UFWH3CrUx94PJs6F7F62bzhK+4WM1Yvm6dRKCmKsqWaA2+Eh5PDLweuBVaE8S0Eu9X/cd0zFJHM2NS5SAU7QyL1gZtZi5ntA44SbGq8G5jp7ocBwscZNb53rZn1mFlPf39/vfIWEWl6kQq4uw+6+2LgPOAiM7sg6hu4+33uXnL3Ultb23jzFBGRCrFGobj7MYKukiuAI2Y2CyB8PFr37EREpKYoo1DazGxa+LwV+CDwIvAYsCY8bQ3waFJJSjQH774qVrzZqb0k76KshTIL2GJmLQQF/xF3/4aZPQ08YmafAA4BNySYp0RQa0rzxq5e3XiqQcVa8izKKJRngSVV4j8BLk8iKRkfrQcu0lw0E7NANNVZpLloOdkCaTGrWqw11bm29vWPj4ipW0XyQlfgBfLutnfEije7asV7tLhI1qiAF8gP+n8WKy4i+aYCXiDqAxdpLirgIiI5pQIuIpJTKuAFogX349FMTMk7DSMskFVL57J116GqcalOxVryTAW8QIZmWz60+xUG3WkxY9XSuZqFKVJQ5g0coVAqlbynp6dh7yciUgRmtsfdS5Vx9YGLiOSUulAKZmNXr7pQRJqECniBbOzqPeUm5qD78LGKuEjxqAulQEZbTlZEiifKjjxzzexJM3vBzJ43s0+G8c+aWZ+Z7Qu/rkw+XRmNptKLNJcoXSi/AP7Q3Z8xs6nAHjPrDl+7192/kFx6Esckg5NVavUkzeMRKaQoO/IcBg6Hz4+b2QvAnKQTk/hOP20SAydOVo2LSPHE+sk2s3aC7dV2h6FbzexZM3vAzM6p8T1rzazHzHr6+/snlKyM7q0qxXu0uIjkW+QCbmZnAV8HbnP314GvAPOBxQRX6F+s9n3ufp+7l9y91NbWVoeUpZbZ01pjxUUk3yIVcDObTFC8H3T3bQDufsTdB939JHA/cFFyaUoU61YujBUXkXyLMgrFgK8CL7j7PWXxWWWnXQc8V//0JI4vP3kgVlxE8i3KKJTlwE1Ar5ntC2N/Aqwys8WAAweBWxLJUCI7cPTNWHERybcoo1C+BVQbiPZE/dMREZGoNL5MRCSnVMALZMGMM2PFRSTfVMALpPv2FSOK9YIZZ9J9+4p0EhKRRGk1woJRsRZpHroCFxHJKRVwEZGcUhdKwWhHHpHmoQJeINqRR6S5qAulQLQjj0hzUQEvEO3II9JcVMALpMWqb71TKy4i+aYCXiCrls6NFReRfNNNzAIZulGpUSgizcG8gf2jpVLJe3p6GvZ+IiJFYGZ73L1UGdcVuDS1jnt2nrJeutaOGZ3aK76uvX1s3r6fV48NMHtaK+tWLqRzSX32hY+yI89cM3vSzF4ws+fN7JNhfLqZdZvZgfCx6qbGIllVWYwg2Pyi456d6SSUcWqv+Lr29rFhWy99xwZwoO/YABu29dK1t68uf36UK/BfAH/o7s+Y2VRgj5l1A78H7HD3u81sPbAe+OO6ZCXjduP9T/PUS68NHy+fP50Hb744xYyySzsYxaP2im/z9v0MnBg8JTZwYpDN2/fX5Sp8zCtwdz/s7s+Ez48DLwBzgGuBLeFpW4DOCWcjE1JZvAGeeuk1brz/6ZQyEmlurx4biBWPK9YwQjNrB5YAu4GZ7n4YgiIPzKhLRjJulcV7rLiIJGv2tNZY8bgiF3AzOwv4OnCbu78e4/vWmlmPmfX09/ePJ0eRRGgHo3jUXvGtW7mQ1sktp8RaJ7ewbuXCuvz5kQq4mU0mKN4Puvu2MHzEzGaFr88Cjlb7Xne/z91L7l5qa2urR84idaEdjOJRe8XXuWQOd12/iDnTWjFgzrRW7rp+Ud1GoYx5E9PMDPgq8IK731P20mPAGuDu8PHRumQk47Z8/vSq3SXL509PIZt8eH3gxKjHcqo/uHTBKUPi/uDSBWmnlHmdS+bUrWBXinIFvhy4CbjMzPaFX1cSFO4OMzsAdITHkqLvH30jVrzZLb2zmyPH3z4lduT42yy9szuljLIt6SFxEt+YV+Du/i2g1mpIl9c3HZmIymI0VrzZqb3iSXpInMSnxaxEJJKkh8RJfJmfSp/kNFQRiW72tFb6qhTreg2Jk/gyfQWuPjdJ0sypU2LFm13SQ+IkvkwX8NH63EQmavcdHSOK9cypU9h9R0dKGWVb0kPiJL5Md6Goz02SpmIdT5JD4iS+TF+BJz0NVUQkzzJ9BX7pe9vYuutQ1bhIPWj1xng2dvVqx6cMyfQV+JMvVl87pVZcJA6t3hjPxq5etu46xGC4i9egO1t3HWJjV2/KmTWvTBdw9YFLkrR6YzwP7X4lVlySl+kCrj5wkewYrLF/bq24JC/TBVzjTkWyo8Wqr6hRKy7Jy3QB17hTkexYtXRurLgkL9OjUEDjTkWyYmi0iUahZEfmC7iIZMemzkUq2BmiAi4ikbWvf3xE7ODdV6WQSX503LOTA0ffHD6u5y5Gme4DF5HsqFa8R4vLyOINcODom3Tcs7Muf/6YBdzMHjCzo2b2XFnss2bWV7FDj4iIlKks3mPF44pyBf53wBVV4ve6++Lw64m6ZCMiIpGNWcDd/ZuApqaJiGTMRPrAbzWzZ8MulnNqnWRma82sx8x6+vu1hkmSzmipPqGiVlxEkrVgxpmx4nGNt4B/BZgPLAYOA1+sdaK73+fuJXcvtbVpFcEkvTVYfUpzrXizm1NjSYZa8WZXa7SJRqHU1n37ihHFOvVRKO5+xN0H3f0kcD9wUV2yEWmgWksyaKmG2k6z0Y9lpBlTTx/1eCLGVcDNbFbZ4XXAc7XOFcmq2762L1a82f2bDY/zi4oPc7/wIC7VJb1k8ZgTeczsIWAFcK6Z/Qj4U2CFmS0GHDgI3FKXbEQksyqL91hxSX7J4jELuLuvqhL+al3eXURExk0zMUVEckoFXEQkIcvnT48Vj0sFvEC04L5Itjx488UjinU9N87WaoQFsmrpXLbuOlQ1LiMtmHFm1TUp6jXJQgSoW7GuRlfgBbKpcxGrl80bvuJuMWP1snlav7mGpCdZFE3SswolPvMGbkhaKpW8p6enYe8nIvWV5NrWUpuZ7XH3UmVcXSgiEpmKdbaogEtT69rbx+bt+3n12ACzp7WybuVC7cEquaECLk2ra28fG7b1MnBiEIC+YwNs2NYLoCIuuaCbmNK0Nm/fP1y8hwycGGTz9v0pZSQSjwq4NK1Xjw3EiotkjbpQpGnNntZKX5ViPVvrgdekewbZogIuTesXg4Ox4s1O9wyyR10o0rSOHH87VrzZ6Z5B9qiAi0gkumeQPWMW8HDT4qNm9lxZbLqZdZvZgfCx5qbGIlIMte4N6J5BeqJcgf8dcEVFbD2ww90XADvCY5Fc0doe8axbuZDWyS2nxFont2gP0RSNWcDd/ZtA5f4/1wJbwudbgM465yWSOC1mFU/nkjncdf0i5kxrxYA501q56/pFuoGZokiLWZlZO/ANd78gPD7m7tPKXv+pu1ftRjGztcBagHnz5r3v5ZdfrkPaIiLNo9ZiVonfxHT3+9y95O6ltra2pN9ORKRpjLeAHzGzWQDh49H6pSQiIlGMt4A/BqwJn68BHq1POiIiElWUYYQPAU8DC83sR2b2CeBuoMPMDgAd4bGIiDTQmFPp3X1VjZcur3MuIiISQ0O3VDOzfmC8w1DOBX5cx3TqRXnFo7ziUV7xZDUvmFhu57v7iFEgDS3gE2FmPdWG0aRNecWjvOJRXvFkNS9IJjethSIiklMq4CIiOZWnAn5f2gnUoLziUV7xKK94spoXJJBbbvrARUTkVHm6AhcRkTIq4CIiOaUCLiKSUyrgE2RmWv0/BrWXSP3kooCb2UVmttzMlqadSzkz+yCwwcwytaeU2mv8zOx8M3tPRczSyqcshyvN7CNp51FJ7RVPvdsr8wXczFYSrH54FfCQmd1qZmelnBZm9mHgz4Bud8/Mrq5qr/Ezs98CuoC/N7N7zGw1gLt7mkXJzDqAzcCbaeVQjdornkTay90z+QUYcDrBnpwfDWOLgW7gj4DWFHNbCLwF3BgezwDagQvUXvloryo5nkmwv2sJeAfwCeAvgdtSzmsFcBAohcdnAe8CJqm91F6ZvQL3wM+BF4BfN7Oz3H0fcBtwJfDxFNM7TtD4S83sEuAfgI3ADjP7T2kkpPaaMAMmAy3u/jPgEWA78G4z+2iKeb0DmAr81MzOAR4GHgT+wsyuTTEvtVc8ibRXZgt4mWcJfoPON7PT3P15YB1wu5ldmEZC7v4q8F+BN4CdwKPu/h8Iui02mdmyNPIKqb3Gwd3fIPhhX2dm8939OPB/gBeB1O4luPsTwH8Oc3maYPOUm4EfAlekdVNY7RU7r2TaK82PFTE+fmwGHiDoEjgrjH0ZWJxyXucBV4TPh2a1/iXw/hRysSy2V0VemWmvajkCs4DPAP8NmB/GpgJPESznmWbbXQusKzueSvCRPLW81F7pt1emrsDNbJmZ3RQ+ThmKu/s6gnV0bwE+b2a3A53AsZTz+hHwv8Pnbma/A3wAONKgvBaYWcnMWij7NJWB9qqVV6rtNQoDcPfDBFdsPwbuNbPlwNUEH32Pp5HX0M0td38U+ELZax3AGQSfahrKw8qTtfYK/09lrr1I8P9XZtZCMbNrgE3AXoIO/w3ufsDMbOg/jJldCvw68B7gy+7+vbTyCl+z8D/NFILf+H8KfMyDbouk8+oEPgd8H/gRsB/Y4u5vlp2TRnvVzMvMJrn7yTTaqyLHpQQ/zD9z9++EscnufiJ83gZcD3yE4Ifv0+7+TEp5tbj7YMV5/5Ggm+B33P25BuR1tru/PsrrabXXqHmVndfo9voNgr74t93922FskrufDJ/Xr70a/XGixkeMdxF06F8QHj8A3EAwWmHE6AngtKzlBVwMtDcwr/8J/Nvw+OPAdwhuDJ6dcntFyquR7VXxvh8GDhCsDNcFfLXstSkV555VGUspr9Mqzl0D/FqD8roe+C5BP+2kitcqjxvZXjXzqnJuI9vraoKLvb8nuFF5S9lrVnHuhNsr8b9QxL/0O4FvAr8FnA38APgngtEKm8JzfgO4qlpDpJzX+4APptBe/xe4rCz2jwQ3CleFxxen1F5j5XVJo9urLJcWghtJN4XHZwPfAv6x4ryVwBkZzKujwXm1h3l0h/mVqv1fSqG9oubV6PZaQjCI4MLw+Abg3iTbKxN94O7+rwQd+xuAfwb+1t0/AvwNMNfM3g/MB54Jz29Iv0/EvN4NJN41USWvB4HfD/vm7yQYZ/094EPhaeeTTnuNldc8oKFdJmX5DRJcHQ0dv+7u/w6YaWb/vezUpcCvZDCvixuZF3ASuMPdOwj+DT8DvM/MToNTZhBektG8PtDgvFqBv3L374bHe4HlZja3YqJO/f4dG/XbKeJvsHMIRlBcXRbbBnQorxE5vRO4Efhbyn7LA48Dp9Ggq+485AW8p+z5auA5YF5Z7FyCTwoN+Zids7zeWfb80wSfQN8fHi9SXiPyagsfWwj6wf+JsPsQWFD3927kXzRiY3w4/OH/EHANwVVku/Kqmdeksue/C/w/wqGDymu4T/JnwMNlsc8Dr1QUy4eBpcprOK+HymJTyp5/mqAL8W6gF5ihvEb8O04aegSeIOgSuyks5ufU8/0zMwpliJlNI/iB/02Cj9+f8l9+JElNVvMaYmYfJ5gy/zF37007nyFp5hVO2vg6waelS4DT3X1V+NrnCX4R/xXBle5q4Ep3/6HyGs7rNHdfHb52ugczfTGznQQjm1Y24t80p3m1EIwweQj4V4I5Gb/rdR4JlrkCPsTMphLkN+YwoUbKcF7nA5Pd/ftp51Iu7bzMbDbwOsHwvL8GTpQVy+sI+iLfB3zJGzDELId5vTVUlMLX3wN8Dfi9Rl7A5DivLoJfKte5+/66v39WC7hIvZnZuwiG6b3t7qvM7NeAN9z9ZeU1al4D7r7azBYTdAd8z91/rLzGzGsB8PvA1npfeQ+/pwq4NBMzO5fghvQlBDeaVngwQzRVOcjrYoK8/r0Ha9ukKgd5LQ9DH3D3xGYaZ2IYoUijhFdozxKMlrkuC0UScpHXNOD6LBRJyEVeZwO/mWTxBhVwaTIWLDF6JfChjN3sVV4xKK/w/dSFIs3GzM5w97fSzqOS8opHeamAi4jklrpQRERySgVcRCSnVMBFRHJKBVxEJKdUwEVEckoFXEQkp/4/ttjoQgnE43kAAAAASUVORK5CYII=", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.scatter('Month','Price',data=new_pumpkins)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3-final" }, "orig_nbformat": 2 }, "nbformat": 4, "nbformat_minor": 2 }