
Introduction to machine learning

🎥 Click the image above for a video discussing the difference between machine learning, AI,

and deep learning.

Pre-lecture quiz

Introduction

Welcome to this course on classical machine learning for beginners! Whether you're completely new

to this topic, or an experienced ML practitioner looking to brush up on an area, we're happy to have

you join us! We want to create a friendly launching spot for your ML study and would be happy to

evaluate, respond to, and incorporate your feedback.

https://youtu.be/lTd9RSxS9ZE
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/1/
https://github.com/microsoft/ML-For-Beginners/discussions
https://github.com/Microsoft/ML-For-Beginners

🎥 Click the image above for a video: MIT's John Guttag introduces machine learning

Getting started with machine learning

Before starting with this curriculum, you need to have your computer set up and ready to run

notebooks locally.

Configure your machine with these videos. Learn more about how to set up your machine in this

set of videos.

Learn Python. It's also recommended to have a basic understanding of Python, a programming

language useful for data scientists that we use in this course.

Learn Node.js and JavaScript. We also use JavaScript a few times in this course when building

web apps, so you will need to have node and npm installed, as well as Visual Studio Code

available for both Python and JavaScript development.

Create a GitHub account. Since you found us here on GitHub, you might already have an

account, but if not, create one and then fork this curriculum to use on your own. (Feel free to give

us a star, too 😊)

Explore Scikit-learn. Familiarize yourself with Scikit-learn, a set of ML libraries that we reference

in these lessons.

What is machine learning?

The term 'machine learning' is one of the most popular and frequently used terms of today. There is a

nontrivial possibility that you have heard this term at least once if you have some sort of familiarity

https://youtu.be/h0e2HAPTGF4
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa
https://nodejs.org/
https://www.npmjs.com/
https://code.visualstudio.com/
https://github.com/
http://localhost:3000/[https://scikit-learn.org/stable/user_guide.html

with technology, no matter what domain you work in. The mechanics of machine learning, however,

are a mystery to most people. For a machine learning beginner, the subject can sometimes feel

overwhelming. Therefore, it is important to understand what machine learning actually is, and to learn

about it step by step, through practical examples.

Google Trends shows the recent 'hype curve' of the term 'machine learning'

We live in a universe full of fascinating mysteries. Great scientists such as Stephen Hawking, Albert

Einstein, and many more have devoted their lives to searching for meaningful information that

uncovers the mysteries of the world around us. This is the human condition of learning: a human child

learns new things and uncovers the structure of their world year by year as they grow to adulthood.

A child's brain and senses perceive the facts of their surroundings and gradually learn the hidden

patterns of life which help the child to craft logical rules to identify learned patterns. The learning

process of the human brain makes humans the most sophisticated living creature of this world.

Learning continuously by discovering hidden patterns and then innovating on those patterns enables

us to make ourselves better and better throughout our lifetime. This learning capacity and evolving

capability is related to a concept called brain plasticity. Superficially, we can draw some motivational

similarities between the learning process of the human brain and the concepts of machine learning.

The human brain perceives things from the real world, processes the perceived information, makes

rational decisions, and performs certain actions based on circumstances. This is what we called

behaving intelligently. When we program a facsimile of the intelligent behavioral process to a

machine, it is called artificial intelligence (AI).

https://www.simplypsychology.org/brain-plasticity.html
https://www.livescience.com/29365-human-brain.html

Although the terms can be confused, machine learning (ML) is an important subset of artificial

intelligence. ML is concerned with using specialized algorithms to uncover meaningful

information and find hidden patterns from perceived data to corroborate the rational decision-

making process.

A diagram showing the relationships between AI, ML, deep learning, and data science.

Infographic by Jen Looper inspired by this graphic

What you will learn in this course

In this curriculum, we are going to cover only the core concepts of machine learning that a beginner

must know. We cover what we call 'classical machine learning' primarily using Scikit-learn, an

excellent library many students use to learn the basics. To understand broader concepts of artificial

intelligence or deep learning, a strong fundamental knowledge of machine learning is indispensable,

and so we would like to offer it here.

In this course you will learn:

core concepts of machine learning

the history of ML

ML and fairness

https://twitter.com/jenlooper
https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining

regression ML techniques

classification ML techniques

clustering ML techniques

natural language processing ML techniques

time series forecasting ML techniques

reinforcement learning

real-world applications for ML

What we will not cover

deep learning

neural networks

AI

To make for a better learning experience, we will avoid the complexities of neural networks, 'deep

learning' - many-layered model-building using neural networks - and AI, which we will discuss in a

different curriculum. We also will offer a forthcoming data science curriculum to focus on that

aspect of this larger field.

Why study machine learning?

Machine learning, from a systems perspective, is defined as the creation of automated systems that

can learn hidden patterns from data to aid in making intelligent decisions.

This motivation is loosely inspired by how the human brain learns certain things based on the data it

perceives from the outside world.

✅ Think for a minute why a business would want to try to use machine learning strategies vs.

creating a hard-coded rules-based engine.

Applications of machine learning

Applications of machine learning are now almost everywhere, and are as ubiquitous as the data that

is flowing around our societies, generated by our smart phones, connected devices, and other

systems. Considering the immense potential of state-of-the-art machine learning algorithms,

researchers have been exploring their capability to solve multi-dimensional and multi-disciplinary

real-life problems with great positive outcomes.

You can use machine learning in many ways:

To predict the likelihood of disease from a patient's medical history or reports.

To leverage weather data to predict weather events.

To understand the sentiment of a text.

To detect fake news to stop the spread of propaganda.

Finance, economics, earth science, space exploration, biomedical engineering, cognitive science,

and even fields in the humanities have adapted machine learning to solve the arduous, data-

processing heavy problems of their domain.

Machine learning automates the process of pattern-discovery by finding meaningful insights from

real-world or generated data. It has proven itself to be highly valuable in business, health, and

financial applications, among others.

In the near future, understanding the basics of machine learning is going to be a must for people from

any domain due to its widespread adoption.

🚀 Challenge

Sketch, on paper or using an online app like Excalidraw, your understanding of the differences

between AI, ML, deep learning, and data science. Add some ideas of problems that each of these

techniques are good at solving.

Post-lecture quiz

Review & Self Study

To learn more about how you can work with ML algorithms in the cloud, follow this Learning Path.

Assignment

https://excalidraw.com/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/2/
https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa

Get up and running

History of machine learning

Sketchnote by Tomomi Imura

Pre-lecture quiz

In this lesson, we will walk through the major milestones in the history of machine learning and

artificial intelligence.

The history of artificial intelligence, AI, as a field is intertwined with the history of machine learning, as

the algorithms and computational advances that underpin ML fed into the development of AI. It is

useful to remember that, while these fields as distinct areas of inquiry began to crystallize in the

1950s, important algorithmical, statistical, mathematical, computational and technical discoveries

predated and overlapped this era. In fact, people have been thinking about these questions for

https://www.twitter.com/girlie_mac
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/3/
https://wikipedia.org/wiki/Timeline_of_machine_learning

hundreds of years: this article discusses the historical intellectual underpinnings of the idea of a

'thinking machine.'

Notable discoveries

1763, 1812 Bayes Theorem and its predecessors. This theorem and its applications underlie

inference, describing the probability of an event occurring based on prior knowledge.

1805 Least Square Theory by French mathematician Adrien-Marie Legendre. This theory, which

you will learn about in our Regression unit, helps in data fitting.

1913 Markov Chains named after Russian mathematician Andrey Markov is used to describe a

sequence of possible events based on a previous state.

1957 Perceptron is a type of linear classifier invented by American psychologist Frank Rosenblatt

that underlies advances in deep learning.

1967 Nearest Neighbor is an algorithm originally designed to map routes. In an ML context it is

used to detect patterns.

1970 Backpropagation is used to train feedforward neural networks.

1982 Recurrent Neural Networks are artificial neural networks derived from feedforward neural

networks that create temporal graphs.

✅ Do a little research. What other dates stand out as pivotal in the history of ML and AI?

1950: Machines that think

Alan Turing, a truly remarkable person who was voted by the public in 2019 as the greatest scientist

of the 20th century, is credited as helping to lay the foundation for the concept of a 'machine that can

think.' He grappled with naysayers and his own need for empirical evidence of this concept in part by

creating the Turing Test, which you will explore in our NLP lessons.

1956: Dartmouth Summer Research Project

"The Dartmouth Summer Research Project on artificial intelligence was a seminal event for artificial

intelligence as a field," and it was here that the term 'artificial intelligence' was coined (source).

Every aspect of learning or any other feature of intelligence can in principle be so precisely

described that a machine can be made to simulate it.

https://wikipedia.org/wiki/History_of_artificial_intelligence
https://wikipedia.org/wiki/Bayes%27_theorem
https://wikipedia.org/wiki/Least_squares
https://wikipedia.org/wiki/Markov_chain
https://wikipedia.org/wiki/Perceptron
https://wikipedia.org/wiki/Nearest_neighbor
https://wikipedia.org/wiki/Backpropagation
https://wikipedia.org/wiki/Feedforward_neural_network
https://wikipedia.org/wiki/Recurrent_neural_network
https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century
https://www.bbc.com/news/technology-18475646
https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth

The lead researcher, mathematics professor John McCarthy, hoped "to proceed on the basis of the

conjecture that every aspect of learning or any other feature of intelligence can in principle be so

precisely described that a machine can be made to simulate it." The participants included another

luminary in the field, Marvin Minsky.

The workshop is credited with having initiated and encouraged several discussions including "the rise

of symbolic methods, systems focussed on limited domains (early expert systems), and deductive

systems versus inductive systems." (source).

1956 - 1974: "The golden years"

From the 1950s through the mid '70s, optimism ran high in the hope that AI could solve many

problems. In 1967, Marvin Minsky stated confidently that "Within a generation ... the problem of

creating 'artificial intelligence' will substantially be solved." (Minsky, Marvin (1967), Computation:

Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)

natural language processing research flourished, search was refined and made more powerful, and

the concept of 'micro-worlds' was created, where simple tasks were completed using plain language

instructions.

Research was well funded by government agencies, advances were made in computation and

algorithms, and prototypes of intelligent machines were built. Some of these machines include:

Shakey the robot, who could maneuver and decide how to perform tasks 'intelligently'.

https://wikipedia.org/wiki/Dartmouth_workshop
https://wikipedia.org/wiki/Shakey_the_robot

Shakey in 1972

Eliza, an early 'chatterbot', could converse with people and act as a primitive 'therapist'. You'll

learn more about Eliza in the NLP lessons.

A version of Eliza, a chatbot

"Blocks world" was an example of a micro-world where blocks could be stacked and sorted, and

experiments in teaching machines to make decisions could be tested. Advances built with libraries

such as SHRDLU helped propel language processing forward.

https://wikipedia.org/wiki/SHRDLU
https://www.youtube.com/watch?v=QAJz4YKUwqw

🎥 Click the image above for a video: Blocks world with SHRDLU

1974 - 1980: "AI Winter"

By the mid 1970s, it had become apparent that the complexity of making 'intelligent machines' had

been understated and that its promise, given the available compute power, had been overblown.

Funding dried up and confidence in the field slowed. Some issues that impacted confidence included:

Limitations. Compute power was too limited.

Combinatorial explosion. The amount of parameters needed to be trained grew exponentially as

more was asked of computers, without a parallel evolution of compute power and capability.

Paucity of data. There was a paucity of data that hindered the process of testing, developing, and

refining algorithms.

Are we asking the right questions?. The very questions that were being asked began to be

questioned. Researchers began to field criticism about their approaches:

Turing tests came into question by means, among other ideas, of the 'chinese room theory'

which posited that, "programming a digital computer may make it appear to understand

language but could not produce real understanding." (source)

The ethics of introducing artificial intelligences such as the "therapist" ELIZA into society was

challenged.

At the same time, various AI schools of thought began to form. A dichotomy was established between

"scruffy" vs. "neat AI" practices. Scruffy labs tweaked programs for hours until they had the desired

results. Neat labs "focused on logic and formal problem solving". ELIZA and SHRDLU were well-

known scruffy systems. In the 1980s, as demand emerged to make ML systems reproducible, the

neat approach gradually took the forefront as its results are more explainable.

1980s Expert systems

As the field grew, its benefit to business became clearer, and in the 1980s so did the proliferation of

'expert systems'. "Expert systems were among the first truly successful forms of artificial intelligence

(AI) software." (source).

This type of system is actually hybrid, consisting partially of a rules engine defining business

requirements, and an inference engine that leveraged the rules system to deduce new facts.

This era also saw increasing attention paid to neural networks.

https://plato.stanford.edu/entries/chinese-room/
https://wikipedia.org/wiki/Neats_and_scruffies
https://wikipedia.org/wiki/Expert_system

1987 - 1993: AI 'Chill'

The proliferation of specialized expert systems hardware had the unfortunate effect of becoming too

specialized. The rise of personal computers also competed with these large, specialized, centralized

systems. The democratization of computing had begun, and it eventually paved the way for the

modern explosion of big data.

1993 - 2011

This epoch saw a new era for ML and AI to be able to solve some of the problems that had been

caused earlier by the lack of data and compute power. The amount of data began to rapidly increase

and become more widely available, for better and for worse, especially with the advent of the

smartphone around 2007. Compute power expanded exponentially, and algorithms evolved

alongside. The field began to gain maturity as the freewheeling days of the past began to crystallize

into a true discipline.

Now

Today, machine learning and AI touch almost every part of our lives. This era calls for careful

understanding of the risks and potentials effects of these algorithms on human lives. As Microsoft's

Brad Smith has stated, "Information technology raises issues that go to the heart of fundamental

human-rights protections like privacy and freedom of expression. These issues heighten

responsibility for tech companies that create these products. In our view, they also call for thoughtful

government regulation and for the development of norms around acceptable uses" (source).

It remains to be seen what the future holds, but it is important to understand these computer systems

and the software and algorithms that they run. We hope that this curriculum will help you to gain a

better understanding so that you can decide for yourself.

https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/

🎥 Click the image above for a video: Yann LeCun discusses the history of deep learning in

this lecture

🚀Challenge

Dig into one of these historical moments and learn more about the people behind them. There are

fascinating characters, and no scientific discovery was ever created in a cultural vacuum. What do

you discover?

Post-lecture quiz

Review & Self Study

Here are items to watch and listen to:

This podcast where Amy Boyd discusses the evolution of AI

https://www.youtube.com/watch?v=mTtDfKgLm54
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/4/
http://runasradio.com/Shows/Show/739

Assignment

Create a timeline

Fairness in Machine Learning

https://www.youtube.com/watch?v=EJt3_bFYKss

Sketchnote by Tomomi Imura

Pre-lecture quiz

Introduction

In this curriculum, you will start to discover how machine learning can and is impacting our everyday

lives. Even now, systems and models are involved in daily decision-making tasks, such as health care

diagnoses or detecting fraud. So it is important that these models work well in order to provide fair

outcomes for everyone.

Imagine what can happen when the data you are using to build these models lacks certain

demographics, such as race, gender, political view, religion, or disproportionally represents such

demographics. What about when the model's output is interpreted to favor some demographic?

What is the consequence for the application?

In this lesson, you will:

https://www.twitter.com/girlie_mac
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/5/

Raise your awareness of the importance of fairness in machine learning.

Learn about fairness-related harms.

Learn about unfairness assessment and mitigation.

Prerequisite

As a prerequisite, please take the "Responsible AI Principles" Learn Path and watch the video below

on the topic:

Learn more about Responsible AI by following this Learning Path

🎥 Click the image above for a video: Microsoft's Approach to Responsible AI

Unfairness in data and algorithms

"If you torture the data long enough, it will confess to anything - Ronald Coase

This statement sounds extreme, but it is true that data can be manipulated to support any

conclusion. Such manipulation can sometimes happen unintentionally. As humans, we all have bias,

https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa
https://youtu.be/dnC8-uUZXSc

and it's often difficult to consciously know when you are introducing bias in data.

Guaranteeing fairness in AI and machine learning remains a complex sociotechnical challenge.

Meaning that it cannot be addressed from either purely social or technical perspectives.

Fairness-related harms

What do you mean by unfairness? "Unfairness" encompasses negative impacts, or "harms", for a

group of people, such as those defined in terms of race, gender, age, or disability status.

The main fairness-related harms can be classified as:

Allocation, if a gender or ethnicity for example is favored over another.

Quality of service. If you train the data for one specific scenario but reality is much more

complex, it leads to a poor performing service.

Stereotyping. Associating a given group with pre-assigned attributes.

Denigration. To unfairly criticize and label something or someone.

Over- or under- representation. The idea is that a certain group is not seen in a certain

profession, and any service or function that keeps promoting that is contributing to harm.

Let s̓ take a look at the examples.

Allocation

Consider a hypothetical system for screening loan applications. The system tends to pick white men

as better candidates over other groups. As a result, loans are withheld from certain applicants.

Another example would be an experimental hiring tool developed by a large corporation to screen

candidates. The tool systemically discriminated against one gender by using the models were trained

to prefer words associated with another. It resulted in penalizing candidates whose resumes contain

words such as "women s̓ rugby team".

✅ Do a little research to find a real-world example of something like this

Quality of Service

Researchers found that several commercial gender classifiers had higher error rates around images

of women with darker skin tones as opposed to images of men with lighter skin tones. Reference

Another infamous example is a hand soap dispenser that could not seem to be able to sense people

with dark skin. Reference

https://www.media.mit.edu/publications/gender-shades-intersectional-accuracy-disparities-in-commercial-gender-classification/
https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773

Stereotyping

Stereotypical gender view was found in machine translation. When translating “he is a nurse and she

is a doctor” into Turkish, problems were encountered. Turkish is a genderless language which has

one pronoun, “o” to convey a singular third person, but translating the sentence back from Turkish to

English yields the stereotypical and incorrect as “she is a nurse and he is a doctor”.

Denigration

An image labeling technology infamously mislabeled images of dark-skinned people as gorillas.

Mislabeling is harmful not just because the system made a mistake because it specifically applied a

label that has a long history of being purposefully used to denigrate Black people.

🎥 Click the image above for a video: AI, Ain't I a Woman - a performance showing the harm

caused by racist denigration by AI

Over- or under- representation

Skewed image search results can be a good example of this harm. When searching images of

professions with an equal or higher percentage of men than women, such as engineering, or CEO,

watch for results that are more heavily skewed towards a given gender.

This search on Bing for 'CEO' produces pretty inclusive results

https://www.youtube.com/watch?v=QxuyfWoVV98

These five main types of harms are not mutually exclusive, and a single system can exhibit more than

one type of harm. In addition, each case varies in its severity. For instance, unfairly labeling someone

as a criminal is a much more severe harm than mislabeling an image. It's important, however, to

remember that even relatively non-severe harms can make people feel alienated or singled out and

the cumulative impact can be extremely oppressive.

✅ Discussion: Revisit some of the examples and see if they show different harms.

Allocation
Quality of

service
Stereotyping Denigration

Over- or under-

representation

Automated hiring

system
x x x x

Machine

translation

Photo labeling

Detecting unfairness

There are many reasons why a given system behaves unfairly. Social biases, for example, might be

reflected in the datasets used to train them. For example, hiring unfairness might have been

exacerbated by over reliance on historical data. By using the patterns in resumes submitted to the

company over a 10-year period, the model determined that men were more qualified because the

majority of resumes came from men, a reflection of past male dominance across the tech industry.

Inadequate data about a certain group of people can be the reason for unfairness. For example,

image classifiers a have higher rate of error for images of dark-skinned people because darker skin

tones were underrepresented in the data.

Wrong assumptions made during development cause unfairness too. For example, a facial analysis

system intended to predict who is going to commit a crime based on images of people s̓ faces can

lead to damaging assumptions. This could lead to substantial harms for people who are misclassified.

Understand your models and build in fairness

Although many aspects of fairness are not captured in quantitative fairness metrics, and it is not

possible to fully remove bias from a system to guarantee fairness, you are still responsible to detect

and to mitigate fairness issues as much as possible.

When you are working with machine learning models, it is important to understand your models by

means of assuring their interpretability and by assessing and mitigating unfairness.

Let s̓ use the loan selection example to isolate the case to figure out each factor's level of impact on

the prediction.

Assessment methods

1. Identify harms (and benefits). The first step is to identify harms and benefits. Think about how

actions and decisions can affect both potential customers and a business itself.

2. Identify the affected groups. Once you understand what kind of harms or benefits that can

occur, identify the groups that may be affected. Are these groups defined by gender, ethnicity, or

social group?

3. Define fairness metrics. Finally, define a metric so you have something to measure against in

your work to improve the situation.

Identify harms (and benefits)

What are the harms and benefits associated with lending? Think about false negatives and false

positive scenarios:

False negatives (reject, but Y=1) - in this case, an applicant who will be capable of repaying a loan is

rejected. This is an adverse event because the resources of the loans are withheld from qualified

applicants.

False positives (accept, but Y=0) - in this case, the applicant does get a loan but eventually defaults.

As a result, the applicant's case will be sent to a debt collection agency which can affect their future

loan applications.

Identify affected groups

The next step is to determine which groups are likely to be affected. For example, in case of a credit

card application, a model might determine that women should receive much lower credit limits

compared with their spouses who share household assets. An entire demographic, defined by

gender, is thereby affected.

Define fairness metrics

You have identified harms and an affected group, in this case, delineated by gender. Now, use the

quantified factors to disaggregate their metrics. For example, using the data below, you can see that

women have the largest false positive rate and men have the smallest, and that the opposite is true

for false negatives.

✅ In a future lesson on Clustering, you will see how to build this 'confusion matrix' in code

False positive rate False negative rate count

Women 0.37 0.27 54032

Men 0.31 0.35 28620

Non-binary 0.33 0.31 1266

This table tells us several things. First, we note that there are comparatively few non-binary people in

the data. The data is skewed, so you need to be careful how you interpret these numbers.

In this case, we have 3 groups and 2 metrics. When we are thinking about how our system affects the

group of customers with their loan applicants, this may be sufficient, but when you want to define

larger number of groups, you may want to distill this to smaller sets of summaries. To do that, you can

add more metrics, such as the largest difference or smallest ratio of each false negative and false

positive.

✅ Stop and Think: What other groups are likely to be affected for loan application?

Mitigating unfairness

To mitigate unfairness, explore the model to generate various mitigated models and compare the

tradeoffs it makes between accuracy and fairness to select the most fair model.

This introductory lesson does not dive deeply into the details of algorithmic unfairness mitigation,

such as post-processing and reductions approach, but here is a tool that you may want to try.

Fairlearn

Fairlearn is an open-source Python package that allows you to assess your systems' fairness and

mitigate unfairness.

https://fairlearn.github.io/

The tool helps you to assesses how a model's predictions affect different groups, enabling you to

compare multiple models by using fairness and performance metrics, and supplying a set of

algorithms to mitigate unfairness in binary classification and regression.

Learn how to use the different components by checking out the Fairlearn's GitHub

Explore the user guide, examples

Try some sample notebooks.

Learn how to enable fairness assessments of machine learning models in Azure Machine

Learning.

Check out these sample notebooks for more fairness assessment scenarios in Azure Machine

Learning.

🚀 Challenge

To prevent biases from being introduced in the first place, we should:

have a diversity of backgrounds and perspectives among the people working on systems

invest in datasets that reflect the diversity of our society

develop better methods for detecting and correcting bias when it occurs

Think about real-life scenarios where unfairness is evident in model-building and usage. What else

should we consider?

Post-lecture quiz

Review & Self Study

In this lesson, you have learned some basics of the concepts of fairness and unfairness in machine

learning.

Watch this workshop to dive deeper into the topics:

YouTube: Fairness-related harms in AI systems: Examples, assessment, and mitigation by Hanna

Wallach and Miro Dudik Fairness-related harms in AI systems: Examples, assessment, and

https://github.com/fairlearn/fairlearn/
https://fairlearn.github.io/main/user_guide/index.html
https://fairlearn.github.io/main/auto_examples/index.html
https://github.com/fairlearn/fairlearn/tree/master/notebooks
https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa
https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/6/
https://www.youtube.com/watch?v=1RptHwfkx_k

mitigation - YouTube

Also, read:

Microsoft s̓ RAI resource center: Responsible AI Resources – Microsoft AI

Microsoft s̓ FATE research group: FATE: Fairness, Accountability, Transparency, and Ethics in AI -

Microsoft Research

Explore the Fairlearn toolkit

Fairlearn

Read about Azure Machine Learning's tools to ensure fairness

Azure Machine Learning

Assignment

Explore Fairlearn

Techniques of Machine Learning
The process of building, using, and maintaining machine learning models and the data they use is a

very different process from many other development workflows. In this lesson, we will demystify the

process, and outline the main techniques you need to know. You will:

Understand the processes underpinning machine learning at a high level.

Explore base concepts such as 'models', 'predictions', and 'training data'.

Pre-lecture quiz

Introduction

On a high level, the craft of creating machine learning (ML) processes is comprised of a number of

steps:

1. Decide on the question. Most ML processes start by asking a question that cannot be answered

by a simple conditional program or rules-based engine. These questions often revolve around

https://www.youtube.com/watch?v=1RptHwfkx_k
https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4
https://www.microsoft.com/research/theme/fate/
https://fairlearn.org/
https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/7/

predictions based on a collection of data.

2. Collect and prepare data. To be able to answer your question, you need data. The quality and,

sometimes, quantity of your data will determine how well you can answer your initial question.

Visualizing data is an important aspect of this phase. This phase also includes splitting the data

into a training and testing group to build a model.

3. Choose a training method. Depending on your question and the nature of your data, you need to

choose how you want to train a model to best reflect your data and make accurate predictions

against it. This is the part of your ML process that requires specific expertise and, often, a

considerable amount of experimentation.

4. Train the model. Using your training data, you'll use various algorithms to train a model to

recognize patterns in the data. The model might leverage internal weights that can be adjusted to

privilege certain parts of the data over others to build a better model.

5. Evaluate the model. You use never before seen data (your testing data) from your collected set to

see how the model is performing.

6. Parameter tuning. Based on the performance of your model, you can redo the process using

different parameters, or variables, that control the behavior of the algorithms used to train the

model.

7. Predict. Use new inputs to test the accuracy of your model.

What question to ask

Computers are particularly skilled at discovering hidden patterns in data. This utility is very helpful for

researchers who have questions about a given domain that cannot be easily answered by creating a

conditionally-based rules engine. Given an actuarial task, for example, a data scientist might be able

to construct handcrafted rules around the mortality of smokers vs non-smokers.

When many other variables are brought into the equation, however, a ML model might prove more

efficient to predict future mortality rates based on past health history. A more cheerful example might

be making weather predictions for the month of April in a given location based on data that includes

latitude, longitude, climate change, proximity to the ocean, patterns of the jet stream, and more.

✅ This slide deck on weather models offers a historical perspective for using ML in weather analysis.

Pre-building tasks

Before starting to build your model, there are several tasks you need to complete. To test your

question and form a hypothesis based on a model's predictions, you need to identify and configure

several elements.

https://www2.cisl.ucar.edu/sites/default/files/0900%20June%2024%20Haupt_0.pdf

Data

To be able to answer your question with any kind of certainty, you need a good amount of data of the

right type. There are two things you need to do at this point:

Collect data. Keeping in mind the previous lesson on fairness in data analysis, collect your data

with care. Be aware of the sources of this data, any inherent biases it might have, and document

its origin.

Prepare data. There are several steps in the data preparation process. You might need to collate

data and normalize it if it comes from diverse sources. You can improve the data's quality and

quantity through various methods such as converting strings to numbers (as we do in Clustering).

You might also generate new data, based on the original (as we do in Classification). You can

clean and edit the data (as we did prior to the Web App lesson). Finally, you might also need to

randomize it and shuffle it, depending on your training techniques.

✅ After collecting and processing your data, take a moment to see if its shape will allow you to

address your intended question. It may be that the data will not perform well in your given task, as we

discover in our Clustering lessons!

Selecting your feature variable

A feature is a measurable property of your data. In many datasets it is expressed as a column heading

like 'date' 'size' or 'color'. Your feature variable, usually represented as y in code, represents the

answer to the question you are trying to ask of your data: in December, what color pumpkins will be

cheapest? in San Francisco, what neighborhoods will have the best real estate price?

🎓 Feature Selection and Feature Extraction How do you know which variable to choose when

building a model? You'll probably go through a process of feature selection or feature extraction to

choose the right variables for the most performant model. They're not the same thing, however:

"Feature extraction creates new features from functions of the original features, whereas feature

selection returns a subset of the features." (source)

Visualize your data

An important aspect of the data scientist's toolkit is the power to visualize data using several

excellent libraries such as Seaborn or MatPlotLib. Representing your data visually might allow you to

uncover hidden correlations that you can leverage. Your visualizations might also help you to uncover

bias or unbalanced data (as we discover in Classification).

Split your dataset

https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection
https://wikipedia.org/wiki/Feature_selection

Prior to training, you need to split your dataset into two or more parts of unequal size that still

represent the data well.

Training. This part of the dataset is fit to your model to train it. This set constitutes the majority of

the original dataset.

Testing. A test dataset is an independent group of data, often gathered from the original data,

that you use to confirm the performance of the built model.

Validating. A validation set is a smaller independent group of examples that you use to tune the

model's hyperparameters, or architecture, to improve the model. Depending on your data's size

and the question you are asking, you might not need to build this third set (as we note in Time

Series Forecasting).

Building a model

Using your training data, your goal is to build a model, or a statistical representation of your data,

using various algorithms to train it. Training a model exposes it to data and allows it to make

assumptions about perceived patterns it discovers, validates, and accepts or rejects.

Decide on a training method

Depending on your question and the nature of your data, your will choose a method to train it.

Stepping through Scikit-learn's documentation - which we use in this course - you can explore many

ways to train a model. Depending on your experience, you might have to try several different methods

to build the best model. You are likely to go through a process whereby data scientists evaluate the

performance of a model by feeding it unseen data, checking for accuracy, bias, and other quality-

degrading issues, and selecting the most appropriate training method for the task at hand.

Train a model

Armed with your training data, you are ready to 'fit' it to create a model. You will notice that in many

ML libraries you will find the code 'model.fit' - it is at this time that you send in your data as an array

of values (usually 'X') and a feature variable (usually 'y').

Evaluate the model

Once the training process is complete (it can take many iterations, or 'epochs', to train a large model),

you will be able to evaluate the model's quality by using test data to gauge its performance. This data

https://scikit-learn.org/stable/user_guide.html

is a subset of the original data that the model has not previously analyzed. You can print out a table of

metrics about your model's quality.

🎓 Model fitting

In the context of machine learning, model fitting refers to the accuracy of the model's underlying

function as it attempts to analyze data with which it is not familiar.

🎓 Underfitting and overfitting are common problems that degrade the quality of the model, as the

model fits either not well enough or too well. This causes the model to make predictions either too

closely aligned or too loosely aligned with its training data. An overfit model predicts training data too

well because it has learned the data's details and noise too well. An underfit model is not accurate as

it can neither accurately analyze its training data nor data it has not yet 'seen'.

Infographic by Jen Looper

Parameter tuning

Once your initial training is complete, observe the quality of the model and consider improving it by

tweaking its 'hyperparameters'. Read more about the process in the documentation.

Prediction

https://twitter.com/jenlooper
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa

This is the moment where you can use completely new data to test your model's accuracy. In an

'applied' ML setting, where you are building web assets to use the model in production, this process

might involve gathering user input (a button press, for example) to set a variable and send it to the

model for inference, or evaluation.

In these lessons, you will discover how to use these steps to prepare, build, test, evaluate, and predict

- all the gestures of a data scientist and more, as you progress in your journey to become a 'full stack'

ML engineer.

🚀Challenge

Draw a flow chart reflecting the steps of a ML practitioner. Where do you see yourself right now in the

process? Where do you predict you will find difficulty? What seems easy to you?

Post-lecture quiz

Review & Self Study

Search online for interviews with data scientists who discuss their daily work. Here is one.

Assignment

Interview a data scientist

Get started with Python and Scikit-learn

for regression models

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/8/
https://www.youtube.com/watch?v=Z3IjgbbCEfs

Sketchnote by Tomomi Imura

Pre-lecture quiz

Introduction

In these four lessons, you will discover how to build regression models. We will discuss what these

are for shortly. But before you do anything, make sure you have the right tools in place to start the

process!

In this lesson, you will learn how to:

Configure your computer for local machine learning tasks.

Work with Jupyter notebooks.

Use Scikit-learn, including installation.

Explore linear regression with a hands-on exercise.

https://www.twitter.com/girlie_mac
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/9/

Installations and configurations

🎥 Click the image above for a video: using Python within VS Code.

1. Install Python. Ensure that Python is installed on your computer. You will use Python for many

data science and machine learning tasks. Most computer systems already include a Python

installation. There are useful Python Coding Packs available as well, to ease the setup for some

users.

Some usages of Python, however, require one version of the software, whereas others require a

different version. For this reason, it's useful to work within a virtual environment.

2. Install Visual Studio Code. Make sure you have Visual Studio Code installed on your computer.

Follow these instructions to install Visual Studio Code for the basic installation. You are going to

use Python in Visual Studio Code in this course, so you might want to brush up on how to

configure Visual Studio Code for Python development.

Get comfortable with Python by working through this collection of Learn modules

3. Install Scikit-learn, by following these instructions. Since you need to ensure that you use Python

3, it's recommended that you use a virtual environment. Note, if you are installing this library on a

M1 Mac, there are special instructions on the page linked above.

https://youtu.be/7EXd4_ttIuw
https://www.python.org/downloads/
https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa
https://docs.python.org/3/library/venv.html
https://code.visualstudio.com/
https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa
https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa
https://scikit-learn.org/stable/install.html

4. Install Jupyter Notebook. You will need to install the Jupyter package.

Your ML authoring environment

You are going to use notebooks to develop your Python code and create machine learning models.

This type of file is a common tool for data scientists, and they can be identified by their suffix or

extension .ipynb .

Notebooks are an interactive environment that allow the developer to both code and add notes and

write documentation around the code which is quite helpful for experimental or research-oriented

projects.

Exercise - work with a notebook

In this folder, you will find the file notebook.ipynb.

1. Open notebook.ipynb in Visual Studio Code.

A Jupyter server will start with Python 3+ started. You will find areas of the notebook that can be

run , pieces of code. You can run a code block, by selecting the icon that looks like a play

button.

2. Select the md icon and add a bit of markdown, and the following text # Welcome to your

notebook.

Next, add some Python code.

3. Type print("hello notebook'") in the code block.

4. Select the arrow to run the code.

You should see the printed statement:

hello notebook
output

https://pypi.org/project/jupyter/

You can interleaf your code with comments to self-document the notebook.

✅ Think for a minute how different a web developer's working environment is versus that of a data

scientist.

Up and running with Scikit-learn

Now that Python is set up in your local environment, and you are comfortable with Jupyter

notebooks, let's get equally comfortable with Scikit-learn (pronounce it sci as in science).

Scikit-learn provides an extensive API to help you perform ML tasks.

According to their website, "Scikit-learn is an open source machine learning library that supports

supervised and unsupervised learning. It also provides various tools for model fitting, data

preprocessing, model selection and evaluation, and many other utilities."

In this course, you will use Scikit-learn and other tools to build machine learning models to perform

what we call 'traditional machine learning' tasks. We have deliberately avoided neural networks and

deep learning, as they are better covered in our forthcoming 'AI for Beginners' curriculum.

Scikit-learn makes it straightforward to build models and evaluate them for use. It is primarily focused

on using numeric data and contains several ready-made datasets for use as learning tools. It also

includes pre-built models for students to try. Let's explore the process of loading prepackaged data

and using a built in estimator first ML model with Scikit-learn with some basic data.

https://scikit-learn.org/stable/modules/classes.html#api-ref
https://scikit-learn.org/stable/getting_started.html

Exercise - your first Scikit-learn notebook

This tutorial was inspired by the linear regression example on Scikit-learn's web site.

In the notebook.ipynb file associated to this lesson, clear out all the cells by pressing the 'trash can'

icon.

In this section, you will work with a small dataset about diabetes that is built into Scikit-learn for

learning purposes. Imagine that you wanted to test a treatment for diabetic patients. Machine

Learning models might help you determine which patients would respond better to the treatment,

based on combinations of variables. Even a very basic regression model, when visualized, might

show information about variables that would help you organize your theoretical clinical trials.

✅ There are many types of regression methods, and which one you pick depends on the answer

you're looking for. If you want to predict the probable height for a person of a given age, you'd use

linear regression, as you're seeking a numeric value. If you're interested in discovering whether a

type of cuisine should be considered vegan or not, you're looking for a category assignment so you

would use logistic regression. You'll learn more about logistic regression later. Think a bit about some

questions you can ask of data, and which of these methods would be more appropriate.

Let's get started on this task.

Import libraries

For this task we will import some libraries:

matplotlib. It's a useful graphing tool and we will use it to create a line plot.

numpy. numpy is a useful library for handling numeric data in Python.

sklearn. This is the Scikit-learn library.

Import some libraries to help with your tasks.

1. Add imports by typing the following code:

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model, model_selection

python

https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py
https://matplotlib.org/
https://numpy.org/doc/stable/user/whatisnumpy.html

Above you are importing matplottlib , numpy and you are importing datasets ,

linear_model and model_selection from sklearn . model_selection is used for

splitting data into training and test sets.

The diabetes dataset

The built-in diabetes dataset includes 442 samples of data around diabetes, with 10 feature

variables, some of which include:

age: age in years bmi: body mass index bp: average blood pressure s1 tc: T-Cells (a type of white

blood cells)

✅ This dataset includes the concept of 'sex' as a feature variable important to research around

diabetes. Many medical datasets include this type of binary classification. Think a bit about how

categorizations such as this might exclude certain parts of a population from treatments.

Now, load up the X and y data.

🎓 Remember, this is supervised learning, and we need a named 'y' target.

In a new code cell, load the diabetes dataset by calling load_diabetes() . The input

return_X_y=True signals that X will be a data matrix, and y will be the regression target.

1. Add some print commands to show the shape of the data matrix and its first element:

What you are getting back as a response, is a tuple. What you are doing is to assign the two first

values of the tuple to X and y respectively. Learn more about tuples.

You can see that this data has 442 items shaped in arrays of 10 elements:

X, y = datasets.load_diabetes(return_X_y=True)
print(X.shape)
print(X[0])

python

(442, 10)
[0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076
-0.04340085 -0.00259226 0.01990842 -0.01764613]

text

https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset
https://wikipedia.org/wiki/Tuple

✅ Think a bit about the relationship between the data and the regression target. Linear

regression predicts relationships between feature X and target variable y. Can you find the target

for the diabetes dataset in the documentation? What is this dataset demonstrating, given that

target?

2. Next, select a portion of this dataset to plot by arranging it into a new array using numpy's

newaxis function. We are going to use linear regression to generate a line between values in

this data, according to a pattern it determines.

✅ At any time, print out the data to check its shape.

3. Now that you have data ready to be plotted, you can see if a machine can help determine a logical

split between the numbers in this dataset. To do this, you need to split both the data (X) and the

target (y) into test and training sets. Scikit-learn has a straightforward way to do this; you can split

your test data at a given point.

4. Now you are ready to train your model! Load up the linear regression model and train it with your X

and y training sets using model.fit() :

✅ model.fit() is a function you'll see in many ML libraries such as TensorFlow

5. Then, create a prediction using test data, using the function predict() . This will be used to

draw the line between data groups

6. Now it's time to show the data in a plot. Matplotlib is a very useful tool for this task. Create a

scatterplot of all the X and y test data, and use the prediction to draw a line in the most

appropriate place, between the model's data groupings.

X = X[:, np.newaxis, 2]
python

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y
python

model = linear_model.LinearRegression()
model.fit(X_train, y_train)

python

y_pred = model.predict(X_test)
python

https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset

✅ Think a bit about what's going on here. A straight line is running through many small dots of

data, but what is it doing exactly? Can you see how you should be able to use this line to predict

where a new, unseen data point should fit in relationship to the plot's y axis? Try to put into words

the practical use of this model.

Congratulations, you built your first linear regression model, created a prediction with it, and

displayed it in a plot!

🚀Challenge

Plot a different variable from this dataset. Hint: edit this line: X = X[:, np.newaxis, 2] . Given

this dataset's target, what are you able to discover about the progression of diabetes as a disease?

Post-lecture quiz

plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=3)
plt.show()

python

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/10/

Review & Self Study

In this tutorial, you worked with simple linear regression, rather than univariate or multiple linear

regression. Read a little about the differences between these methods, or take a look at this video

Read more about the concept of regression and think about what kinds of questions can be

answered by this technique. Take this tutorial to deepen your understanding.

Assignment

A different dataset

Build a regression model using Scikit-

learn: prepare and visualize data

Infographic by Dasani Madipalli

https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef
https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa
https://twitter.com/dasani_decoded

Pre-lecture quiz

Introduction

Now that you are set up with the tools you need to start tackling machine learning model building

with Scikit-learn, you are ready to start asking questions of your data. As you work with data and

apply ML solutions, it's very important to understand how to ask the right question to properly unlock

the potentials of your dataset.

In this lesson, you will learn:

How to prepare your data for model-building.

How to use Matplotlib for data visualization.

Asking the right question of your data

The question you need answered will determine what type of ML algorithms you will leverage. And

the quality of the answer you get back will be heavily dependent on the nature of your data.

Take a look at the data provided for this lesson. You can open this .csv file in VS Code. A quick skim

immediately shows that there are blanks and a mix of strings and numeric data. There's also a

strange column called 'Package' where the data is a mix between 'sacks', 'bins' and other values. The

data, in fact, is a bit of a mess.

In fact, it is not very common to be gifted a dataset that is completely ready to use to create a ML

model out of the box. In this lesson, you will learn how to prepare a raw dataset using standard

Python libraries. You will also learn various techniques to visualize the data.

Case study: 'the pumpkin market'

In this folder you will find a .csv file in the root data folder called US-pumpkins.csv which includes

1757 lines of data about the market for pumpkins, sorted into groupings by city. This is raw data

extracted from the Specialty Crops Terminal Markets Standard Reports distributed by the United

States Department of Agriculture.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/11/
https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice

Preparing data

This data is in the public domain. It can be downloaded in many separate files, per city, from the

USDA web site. To avoid too many separate files, we have concatenated all the city data into one

spreadsheet, thus we have already prepared the data a bit. Next, let's take a closer look at the data.

The pumpkin data - early conclusions

What do you notice about this data? You already saw that there is a mix of strings, numbers, blanks

and strange values that you need to make sense of.

What question can you ask of this data, using a Regression technique? What about "Predict the price

of a pumpkin for sale during a given month". Looking again at the data, there are some changes you

need to make to create the data structure necessary for the task.

Exercise - analyze the pumpkin data

Let's use Pandas, (the name stands for Python Data Analysis) a tool very useful for shaping

data, to analyze and prepare this pumpkin data.

First, check for missing dates

You will first need to take steps to check for missing dates:

1. Convert the dates to a month format (these are US dates, so the format is MM/DD/YYYY).

2. Extract the month to a new column.

Open the notebook.ipynb file in Visual Studio Code and import the spreadsheet in to a new Pandas

dataframe.

1. Use the head() function to view the first five rows.

✅ What function would you use to view the last five rows?

2. Check if there is missing data in the current dataframe:

import pandas as pd
pumpkins = pd.read_csv('../../data/US-pumpkins.csv')
pumpkins.head()

python

https://pandas.pydata.org/

There is missing data, but maybe it won't matter for the task at hand.

3. To make your dataframe easier to work with, drop several of its columns, using drop() ,

keeping only the columns you need:

Second, determine average price of pumpkin

Think about how to determine the average price of a pumpkin in a given month. What columns would

you pick for this task? Hint: you'll need 3 columns.

Solution: take the average of the Low Price and High Price columns to populate the new

Price column, and convert the Date column to only show the month. Fortunately, according to the

check above, there is no missing data for dates or prices.

1. To calculate the average, add the following code:

✅ Feel free to print any data you'd like to check using print(month) .

2. Now, copy your converted data into a fresh Pandas dataframe:

Printing out your dataframe will show you a clean, tidy dataset on which you can build your new

regression model.

But wait! There's something odd here

If you look at the Package column, pumpkins are sold in many different configurations. Some are

sold in '1 1/9 bushel' measures, and some in '1/2 bushel' measures, some per pumpkin, some per

pumpkins.isnull().sum()
python

new_columns = ['Package', 'Month', 'Low Price', 'High Price', 'Date']
pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_co

python

price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2

month = pd.DatetimeIndex(pumpkins['Date']).month

python

new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Packag
python

pound, and some in big boxes with varying widths.

Pumpkins seem very hard to weigh consistently

Digging into the original data, it's interesting that anything with Unit of Sale equalling 'EACH' or

'PER BIN' also have the Package type per inch, per bin, or 'each'. Pumpkins seem to be very hard

to weigh consistently, so let's filter them by selecting only pumpkins with the string 'bushel' in their

Package column.

1. Add a filter at the top of the file, under the initial .csv import:

If you print the data now, you can see that you are only getting the 415 or so rows of data

containing pumpkins by the bushel.

But wait! There's one more thing to do

Did you notice that the bushel amount varies per row? You need to normalize the pricing so that you

show the pricing per bushel, so do some math to standardize it.

1. Add these lines after the block creating the new_pumpkins dataframe:

✅ According to The Spruce Eats, a bushel's weight depends on the type of produce, as it's a volume

measurement. "A bushel of tomatoes, for example, is supposed to weigh 56 pounds... Leaves and

greens take up more space with less weight, so a bushel of spinach is only 20 pounds." It's all pretty

complicated! Let's not bother with making a bushel-to-pound conversion, and instead price by the

bushel. All this study of bushels of pumpkins, however, goes to show how very important it is to

understand the nature of your data!

Now, you can analyze the pricing per unit based on their bushel measurement. If you print out the

data one more time, you can see how it's standardized.

pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True
python

new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price']

new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] =

python

https://www.thespruceeats.com/how-much-is-a-bushel-1389308

✅ Did you notice that pumpkins sold by the half-bushel are very expensive? Can you figure out why?

Hint: little pumpkins are way pricier than big ones, probably because there are so many more of them

per bushel, given the unused space taken by one big hollow pie pumpkin.

Visualization Strategies

Part of the data scientist's role is to demonstrate the quality and nature of the data they are working

with. To do this, they often create interesting visualizations, or plots, graphs, and charts, showing

different aspects of data. In this way, they are able to visually show relationships and gaps that are

otherwise hard to uncover.

Visualizations can also help determine the machine learning technique most appropriate for the data.

A scatterplot that seems to follow a line, for example, indicates that the data is a good candidate for a

linear regression exercise.

One data visualization libary that works well in Jupyter notebooks is Matplotlib (which you also saw in

the previous lesson).

Get more experience with data visualization in these tutorials.

Exercise - experiment with Matplotlib

Try to create some basic plots to display the new dataframe you just created. What would a basic line

plot show?

1. Import Matplotlib at the top of the file, under the Pandas import:

2. Rerun the entire notebook to refresh.

3. At the bottom of the notebook, add a cell to plot the data as a box:

import matplotlib.pyplot as plt
python

price = new_pumpkins.Price
month = new_pumpkins.Month

python

https://matplotlib.org/
https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa

Is this a useful plot? Does anything about it surprise you?

It's not particularly useful as all it does is display in your data as a spread of points in a given

month.

Make it useful

To get charts to display useful data, you usually need to group the data somehow. Let's try creating a

plot where the y axis shows the months and the data demonstrates the distribution of data.

1. Add a cell to create a grouped bar chart:

plt.scatter(price, month)
plt.show()

new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')
plt.ylabel("Pumpkin Price")

python

This is a more useful data visualization! It seems to indicate that the highest price for pumpkins

occurs in September and October. Does that meet your expectation? Why or why not?

🚀Challenge

Explore the different types of visualization that M Matplotlib offers. Which types are most appropriate

for regression problems?

Post-lecture quiz

Review & Self Study

Take a look at the many ways to visualize data. Make a list of the various libraries available and note

which are best for given types of tasks, for example 2D visualizations vs. 3D visualizations. What do

you discover?

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/12/

Assignment

Exploring visualization

Build a regression model using Scikit-

learn: regression two ways

Infographic by Dasani Madipalli

Pre-lecture quiz

Introduction

So far you have explored what regression is with sample data gathered from the pumpkin pricing

dataset that we will use throughout this lesson. You have also visualized it using Matplotlib.

Now you are ready to dive deeper into regression for ML. In this lesson, you will learn more about two

types of regression: basic linear regression and polynomial regression, along with some of the math

underlying these techniques.

Throughout this curriculum, we assume minimal knowledge of math, and seek to make it

accessible for students coming from other fields, so watch for notes, 🧮 callouts, diagrams,

https://twitter.com/dasani_decoded
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/13/

and other learning tools to aid in comprehension.

Prerequisite

You should be familiar by now with the structure of the pumpkin data that we are examining. You can

find it preloaded and pre-cleaned in this lesson's notebook.ipynb file. In the file, the pumpkin price is

displayed per bushel in a new dataframe. Make sure you can run these notebooks in kernels in Visual

Studio Code.

Preparation

As a reminder, you are loading this data so as to ask questions of it.

When is the best time to buy pumpkins?

What price can I expect of a case of miniature pumpkins?

Should I buy them in half-bushel baskets or by the 1 1/9 bushel box? Let's keep digging into this

data.

In the previous lesson, you created a Pandas dataframe and populated it with part of the original

dataset, standardizing the pricing by the bushel. By doing that, however, you were only able to gather

about 400 datapoints and only for the fall months.

Take a look at the data that we preloaded in this lesson's accompanying notebook. The data is

preloaded and an initial scatterplot is charted to show month data. Maybe we can get a little more

detail about the nature of the data by cleaning it more.

A linear regression line

As you learned in Lesson 1, the goal of a linear regression exercise is to be able to plot a line to:

Show variable relationships. Show the relationship between variables

Make predictions. Make accurate predictions on where a new datapoint would fall in relationship

to that line.

It is typical of Least-Squares Regression to draw this type of line. The term 'least-squares'

means that all the datapoints surrounding the regression line are squared and then added up.

Ideally, that final sum is as small as possible, because we want a low number of errors, or

least-squares .

We do so since we want to model a line that has the least cumulative distance from all of our data

points. We also square the terms before adding them since we are concerned with its magnitude

rather than its direction.

🧮 Show me the math

This line, called the line of best fit can be expressed by an equation:

X is the 'explanatory variable'. Y is the 'dependent variable'. The slope of the line is b

and a is the y-intercept, which refers to the value of Y when X = 0 .

First, calculate the slope b . Infographic by Jen Looper

In other words, and referring to our pumpkin data's original question: "predict the price of a

pumpkin per bushel by month", X would refer to the price and Y would refer to the month

of sale.

Y = a + bX

https://en.wikipedia.org/wiki/Simple_linear_regression
https://twitter.com/jenlooper

Calculate the value of Y. If you're paying around $4, it must be April! Infographic by Jen

Looper

The math that calculates the line must demonstrate the slope of the line, which is also

dependent on the intercept, or where Y is situated when X = 0 .

You can observe the method of calculation for these values on the Math is Fun web site. Also

visit this Least-squares calculator to watch how the numbers' values impact the line.

Correlation

One more term to understand is the Correlation Coefficient between given X and Y variables. Using

a scatterplot, you can quickly visualize this coefficient. A plot with datapoints scattered in a neat line

have high correlation, but a plot with datapoints scattered everywhere between X and Y have a low

correlation.

A good linear regression model will be one that has a high (nearer to 1 than 0) Correlation Coefficient

using the Least-Squares Regression method with a line of regression.

✅ Run the notebook accompanying this lesson and look at the City to Price scatterplot. Does the

data associating City to Price for pumpkin sales seem to have high or low correlation, according to

your visual interpretation of the scatterplot?

https://twitter.com/jenlooper
https://www.mathsisfun.com/data/least-squares-regression.html
https://www.mathsisfun.com/data/least-squares-calculator.html

Prepare your data for regression

Now that you have an understanding of the math behind this exercise, create a Regression model to

see if you can predict which package of pumpkins will have the best pumpkin prices. Someone

buying pumpkins for a holiday pumpkin patch might want this information to be able to optimize their

purchases of pumpkin packages for the patch.

Since you'll use Scikit-learn, there's no reason to do this by hand (although you could!). In the main

data-processing block of your lesson notebook, add a library from Scikit-learn to automatically

convert all string data to numbers:

If you look at the new_pumpkins dataframe now, you see that all the strings are now numeric. This

makes it harder for you to read but much more intelligible for Scikit-learn! Now you can make more

educated decisions (not just based on eyeballing a scatterplot) about the data that is best suited to

regression.

Try to find a good correlation between two points of your data to potentially build a good predictive

model. As it turns out, there's only weak correlation between the City and Price:

However there's a bit better correlation between the Package and its Price. That makes sense, right?

Normally, the bigger the produce box, the higher the price.

A good question to ask of this data will be: 'What price can I expect of a given pumpkin package?'

Let's build this regression model

from sklearn.preprocessing import LabelEncoder

new_pumpkins.iloc[:, 0:-1] = new_pumpkins.iloc[:, 0:-1].apply(LabelEncoder(
new_pumpkins.iloc[:, 0:-1] = new_pumpkins.iloc[:, 0:-1].apply(LabelEncoder(

python

print(new_pumpkins['City'].corr(new_pumpkins['Price']))
0.32363971816089226

python

print(new_pumpkins['Package'].corr(new_pumpkins['Price']))
0.6061712937226021

python

Building a linear model

Before building your model, do one more tidy-up of your data. Drop any null data and check once

more what the data looks like.

Then, create a new dataframe from this minimal set and print it out:

1. Now you can assign your X and y coordinate data:

✅ What's going on here? You're using Python slice notation to create arrays to populate X and

y .

new_pumpkins.dropna(inplace=True)
new_pumpkins.info()

python

new_columns = ['Package', 'Price']
lin_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c not

lin_pumpkins

python

 Package Price
70 0 13.636364
71 0 16.363636
72 0 16.363636
73 0 15.454545
74 0 13.636364
...
1738 2 30.000000
1739 2 28.750000
1740 2 25.750000
1741 2 24.000000
1742 2 24.000000
415 rows × 2 columns

output

X = lin_pumpkins.values[:, :1]
y = lin_pumpkins.values[:, 1:2]

python

https://stackoverflow.com/questions/509211/understanding-slice-notation/509295#509295

2. Next, start the regression model-building routines:

Because the correlation isn't particularly good, the model produced isn't terribly accurate.

3. You can visualize the line that's drawn in the process:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)

pred = lin_reg.predict(X_test)

accuracy_score = lin_reg.score(X_train,y_train)
print('Model Accuracy: ', accuracy_score)

python

Model Accuracy: 0.3315342327998987
output

plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, pred, color='blue', linewidth=3)

plt.xlabel('Package')
plt.ylabel('Price')

plt.show()

python

4. Test the model against a hypothetical variety:

The returned price for this mythological Variety is:

That number makes sense, if the logic of the regression line holds true.

🎃 Congratulations, you just created a model that can help predict the price of a few varieties of

pumpkins. Your holiday pumpkin patch will be beautiful. But you can probably create a better model!

Polynomial regression

Another type of linear regression is polynomial regression. While sometimes there's a linear

relationship between variables - the bigger the pumpkin in volume, the higher the price - sometimes

these relationships can't be plotted as a plane or straight line.

✅ Here are some more examples of data that could use polynomial regression

lin_reg.predict(np.array([[2.75]]))
python

array([[33.15655975]])
output

https://online.stat.psu.edu/stat501/lesson/9/9.8

Take another look at the relationship between Variety to Price in the previous plot. Does this

scatterplot seem like it should necessarily be analyzed by a straight line? Perhaps not. In this case,

you can try polynomial regression.

✅ Polynomials are mathematical expressions that might consist of one or more variables and

coefficients

Polynomial regression creates a curved line to better fit nonlinear data.

1. Let's recreate a dataframe populated with a segment of the original pumpkin data:

A good way to visualize the correlations between data in dataframes is to display it in a 'coolwarm'

chart:

2. Use the Background_gradient() method with coolwarm as its argument value:

This code creates a heatmap:

Looking at this chart, you can visualize the good correlation between Package and Price. So you

should be able to create a somewhat better model than the last one.

Create a pipeline

new_columns = ['Variety', 'Package', 'City', 'Month', 'Price']
poly_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c

poly_pumpkins

python

corr = poly_pumpkins.corr()
corr.style.background_gradient(cmap='coolwarm')

python

Scikit-learn includes a helpful API for building polynomial regression models - the make_pipeline

API. A 'pipeline' is created which is a chain of estimators. In this case, the pipeline includes

polynomial features, or predictions that form a nonlinear path.

1. Build out the X and y columns:

2. Create the pipeline by calling the make_pipeline() method:

Create a sequence

At this point, you need to create a new dataframe with sorted data so that the pipeline can create a

sequence.

Add the following code:

X=poly_pumpkins.iloc[:,3:4].values
y=poly_pumpkins.iloc[:,4:5].values

python

from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

pipeline = make_pipeline(PolynomialFeatures(4), LinearRegression())

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

pipeline.fit(np.array(X_train), y_train)

y_pred=pipeline.predict(X_test)

python

df = pd.DataFrame({'x': X_test[:,0], 'y': y_pred[:,0]})
df.sort_values(by='x',inplace = True)
points = pd.DataFrame(df).to_numpy()

plt.plot(points[:, 0], points[:, 1],color="blue", linewidth=3)
plt.xlabel('Package')
plt.ylabel('Price')
plt.scatter(X,y, color="black")
plt.show()

python

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline

You created a new dataframe by calling pd.DataFrame . Then you sorted the values by calling

sort_values() . Finally you created a polynomial plot:

You can see a curved line that fits your data better.

Let's check the model's accuracy:

And voila!

That's better! Try to predict a price:

Do a prediction

Can we input a new value and get a prediction?

Call predict() to make a prediction:

accuracy_score = pipeline.score(X_train,y_train)
print('Model Accuracy: ', accuracy_score)

python

Model Accuracy: 0.8537946517073784
output

You are given this prediction:

It does make sense, given the plot! And, if this is a better model than the previous one, looking at the

same data, you need to budget for these more expensive pumpkins!

🏆 Well done! You created two regression models in one lesson. In the final section on regression,

you will learn about logistic regression to determine categories.

🚀Challenge

Test several different variables in this notebook to see how correlation corresponds to model

accuracy.

Post-lecture quiz

Review & Self Study

In this lesson we learned about Linear Regression. There are other important types of Regression.

Read about Stepwise, Ridge, Lasso and Elasticnet techniques. A good course to study to learn more

is the Stanford Statistical Learning course

Assignment

Build a Model

pipeline.predict(np.array([[2.75]]))
python

array([[46.34509342]])
output

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/14/
https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning

Logistic regression to predict categories

Infographic by Dasani Madipalli

Pre-lecture quiz

Introduction

In this final lesson on Regression, one of the basic classic ML techniques, we will take a look at

Logistic Regression. You would use this technique to discover patterns to predict binary categories. Is

this candy chocolate or not? Is this disease contagious or not? Will this customer choose this product

or not?

In this lesson, you will learn:

A new library for data visualization

https://twitter.com/dasani_decoded
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/15/

Techniques for logistic regression

✅ Deepen your understanding of working with this type of regression in this Learn module

Prerequisite

Having worked with the pumpkin data, we are now familiar enough with it to realize that there's one

binary category that we can work with: Color .

Let's build a logistic regression model to predict that, given some variables, what color a given

pumpkin is likely to be (orange 🎃 or white 👻).

Why are we talking about binary classification in a lesson grouping about regression? Only for

linguistic convenience, as logistic regression is really a classification method, albeit a linear-

based one. Learn about other ways to classify data in the next lesson group.

Define the question

For our purposes, we will express this as a binary: 'Orange' or 'Not Orange'. There is also a 'striped'

category in our dataset but there are few instances of it, so we will not use it. It disappears once we

remove null values from the dataset, anyway.

🎃 Fun fact, we sometimes call white pumpkins 'ghost' pumpkins. They aren't very easy to

carve, so they aren't as popular as the orange ones but they are cool looking!

About logistic regression

Logistic regression differs from linear regression, which you learned about previously, in a few

important ways.

Binary classification

https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

Logistic regression does not offer the same features as linear regression. The former offers a

prediction about a binary category ("orange or not orange") whereas the latter is capable of

predicting continual values, for example given the origin of a pumpkin and the time of harvest, how

much its price will rise.

Infographic by Dasani Madipalli

Other classifications

There are other types of logistic regression, including multinomial and ordinal:

Multinomial, which involves having more than one category - "Orange, White, and Striped".

Ordinal, which involves ordered categories, useful if we wanted to order our outcomes logically,

like our pumpkins that are ordered by a finite number of sizes (mini,sm,med,lg,xl,xxl).

https://twitter.com/dasani_decoded

Infographic by Dasani Madipalli

It's still linear

Even though this type of Regression is all about 'category predictions', it still works best when there is

a clear linear relationship between the dependent variable (color) and the other independent

variables (the rest of the dataset, like city name and size). It's good to get an idea of whether there is

any linearity dividing these variables or not.

Variables DO NOT have to correlate

Remember how linear regression worked better with more correlated variables? Logistic regression is

the opposite - the variables don't have to align. That works for this data which has somewhat weak

correlations.

You need a lot of clean data

https://twitter.com/dasani_decoded

Logistic regression will give more accurate results if you use more data; our small dataset is not

optimal for this task, so keep that in mind.

✅ Think about the types of data that would lend themselves well to logistic regression

Exercise - tidy the data

First, clean the data a bit, dropping null values and selecting only some of the columns:

1. Add the following code:

You can always take a peek at your new dataframe:

Visualization - side-by-side grid

By now you have loaded up the starter notebook with pumpkin data once again and cleaned it so as

to preserve a dataset containing a few variables, including Color . Let's visualize the dataframe in

the notebook using a different library: Seaborn, which is built on Matplotlib which we used earlier.

Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of

the data for each point in a side-by-side grid.

1. Create such a grid by instantiating a PairGrid , using our pumpkin data new_pumpkins ,

followed by calling map() :

from sklearn.preprocessing import LabelEncoder

new_columns = ['Color','Origin','Item Size','Variety','City Name','Packa

new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in ne

new_pumpkins.dropna(inplace=True)

new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform)

python

new_pumpkins.info
python

https://seaborn.pydata.org/index.html

By observing data side-by-side, you can see how the Color data relates to the other columns.

✅ Given this scatterplot grid, what are some interesting explorations you can envision?

Use a swarm plot

Since Color is a binary category (Orange or Not), it's called 'categorical data' and needs 'a more

specialized approach to visualization'. There are other ways to visualize the relationship of this

category with other variables.

import seaborn as sns

g = sns.PairGrid(new_pumpkins)
g.map(sns.scatterplot)

python

https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar

You can visualize variables side-by-side with Seaborn plots.

1. Try a 'swarm' plot to show the distribution of values:

Violin plot

A 'violin' type plot is useful as you can easily visualize the way that data in the two categories is

distributed. Violin plots don't work so well with smaller datasets as the distribution is displayed more

'smoothly'.

1. As parameters x=Color , kind="violin" and call catplot() :

sns.swarmplot(x="Color", y="Item Size", data=new_pumpkins)
python

sns.catplot(x="Color", y="Item Size",
 kind="violin", data=new_pumpkins)

python

✅ Try creating this plot, and other Seaborn plots, using other variables.

Now that we have an idea of the relationship between the binary categories of color and the larger

group of sizes, let's explore logistic regression to determine a given pumpkin's likely color.

🧮 Show Me The Math

Remember how linear regression often used ordinary least squares to arrive at a value?

Logistic regression relies on the concept of 'maximum likelihood' using sigmoid functions. A

'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere

between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like thus:

where the sigmoid's midpoint finds itself at x's 0 point, L is the curve's maximum value, and k

is the curve's steepness. If the outcome of the function is more than 0.5, the label in question

will be given the class '1' of the binary choice. If not, it will be classified as '0'.

https://wikipedia.org/wiki/Sigmoid_function

Build your model

Building a model to find these binary classification is surprisingly straightforward in Scikit-learn.

1. Select the variables you want to use in your classification model and split the training and test sets

calling train_test_split() :

2. Now you can train your model, by calling fit() with your training data, and print out its result:

Take a look at your model's scoreboard. It's not too bad, considering you have only about 1000

rows of data:

from sklearn.model_selection import train_test_split

Selected_features = ['Origin','Item Size','Variety','City Name','Package

X = new_pumpkins[Selected_features]
y = new_pumpkins['Color']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

python

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

print(classification_report(y_test, predictions))
print('Predicted labels: ', predictions)
print('Accuracy: ', accuracy_score(y_test, predictions))

python

 precision recall f1-score support

 0 0.85 0.95 0.90 166
 1 0.38 0.15 0.22 33

 accuracy 0.82 199

output

Better comprehension via a confusion matrix

While you can get a scoreboard report terms by printing out the items above, you might be able to

understand your model more easily by using a confusion matrix to help us understand how the model

is performing.

🎓 A 'confusion matrix' (or 'error matrix') is a table that expresses your model's true vs. false

positives and negatives, thus gauging the accuracy of predictions.

1. To use a confusion metrics, call confusin_matrix() :

Take a look at your model's confusion matrix:

What's going on here? Let's say our model is asked to classify items between two binary categories,

category 'pumpkin' and category 'not-a-pumpkin'.

If your model predicts something as a pumpkin and it belongs to category 'pumpkin' in reality we

call it a true positive, shown by the top left number.

If your model predicts something as not a pumpkin and it belongs to category 'pumpkin' in reality

we call it a false positive, shown by the top right number.

 macro avg 0.62 0.55 0.56 199
weighted avg 0.77 0.82 0.78 199

Predicted labels: [0 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0
 1 0 1 0 0 0 0 0 0 0
 0 1 1
 0
 0 0 0 1 0 1 0 0 1 0 0 0 1 0]

from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, predictions)

python

array([[162, 4],
 [33, 0]])

output

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report
https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
https://wikipedia.org/wiki/Confusion_matrix

If your model predicts something as a pumpkin and it belongs to category 'not-a-pumpkin' in

reality we call it a false negative, shown by the bottom left number.

If your model predicts something as not a pumpkin and it belongs to category 'not-a-pumpkin' in

reality we call it a true negative, shown by the bottom right number.

Infographic by Jen Looper

As you might have guessed it's preferable to have a larger number of true positives and true

negatives and a lower number of false positives and false negatives, which implies that the model

performs better.

✅ Q: According to the confusion matrix, how did the model do? A: Not too bad; there are a good

number of true positives but also several false negatives.

Let's revisit the terms we saw earlier with the help of the confusion matrix's mapping of TP/TN and

FP/FN:

🎓 Precision: TP/(TP + FN) The fraction of relevant instances among the retrieved instances (e.g.

which labels were well-labeled)

🎓 Recall: TP/(TP + FP) The fraction of relevant instances that were retrieved, whether well-labeled

or not

https://twitter.com/jenlooper

🎓 f1-score: (2 * precision * recall)/(precision + recall) A weighted average of the precision and recall,

with best being 1 and worst being 0

🎓 Support: The number of occurrences of each label retrieved

🎓 Accuracy: (TP + TN)/(TP + TN + FP + FN) The percentage of labels predicted accurately for a

sample.

🎓 Macro Avg: The calculation of the unweighted mean metrics for each label, not taking label

imbalance into account.

🎓 Weighted Avg: The calculation of the mean metrics for each label, taking label imbalance into

account by weighting them by their support (the number of true instances for each label).

✅ Can you think which metric you should watch if you want your model to reduce the number of

false negatives?

Visualize the ROC curve of this model

This is not a bad model; its accuracy is in the 80% range so ideally you could use it to predict the

color of a pumpkin given a set of variables.

Let's do one more visualization to see the so-called 'ROC' score:

Using Seaborn again, plot the model's Receiving Operating Characteristic or ROC. ROC curves are

often used to get a view of the output of a classifier in terms of its true vs. false positives. "ROC

curves typically feature true positive rate on the Y axis, and false positive rate on the X axis." Thus,

the steepness of the curve and the space between the midpoint line and the curve matter: you want a

curve that quickly heads up and over the line. In our case, there are false positives to start with, and

then the line heads up and over properly:

from sklearn.metrics import roc_curve, roc_auc_score

y_scores = model.predict_proba(X_test)
calculate ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])
sns.lineplot([0, 1], [0, 1])
sns.lineplot(fpr, tpr)

python

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc

Finally, use Scikit-learn's roc_auc_score API to compute the actual 'Area Under the Curve'

(AUC):

The result is 0.6976998904709748 . Given that the AUC ranges from 0 to 1, you want a big score,

since a model that is 100% correct in its predictions will have an AUC of 1; in this case, the model is

pretty good.

In future lessons on classifications, you will learn how to iterate to improve your model's scores. But

for now, congratulations! You've completed these regression lessons!

🚀Challenge

There's a lot more to unpack regarding logistic regression! But the best way to learn is to experiment.

Find a dataset that lends itself to this type of analysis and build a model with it. What do you learn?

tip: try Kaggle for interesting datasets.

Post-lecture quiz

auc = roc_auc_score(y_test,y_scores[:,1])
print(auc)

python

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score
https://kaggle.com/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/16/

Review & Self Study

Read the first few pages of this paper from Stanford on some practical uses for logistic regression.

Think about tasks that are better suited for one or the other type of regression tasks that we have

studied up to this point. What would work best?

Assignment

Retrying this regression

Build a Web App to use a ML Model
In this lesson, you will train an ML model on a data set that's out of this world: UFO sightings over the

past century, sourced from NUFORC's database.

You will learn:

How to 'pickle' a trained model

How to use that model in a Flask app

We will continue our use of notebooks to clean data and train our model, but you can take the

process one step further by exploring using a model 'in the wild', so to speak: in a web app.

To do this, you need to build a web app using Flask.

Pre-lecture quiz

Building an app

There are several ways to build web apps to consume machine learning models. Your web

architecture may influence the way your model is trained. Imagine that you are working in a business

where the data science group has trained a model that they want you to use in an app.

Considerations

https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://www.nuforc.org/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/17/

There are many questions you need to ask:

Is it a web app or a mobile app? If you are building a mobile app or need to use the model in an

IoT context, you could use TensorFlow Lite and use the model in an Android or iOS app.

Where will the model reside? In the cloud or locally?

Offline support. Does the app have to work offline?

What technology was used to train the model? The chosen technology may influence the

tooling you need to use.

Using Tensor flow. If you are training a model using TensorFlow, for example, that ecosystem

provides the ability to convert a TensorFlow model for use in a web app by using TensorFlow.js.

Using PyTorch. If you are building a model using a library such as PyTorch, you have the

option to export it in ONNX (Open Neural Network Exchange) format for use in JavaScript web

apps that can use the Onnx Runtime. This option will be explored in a future lesson for a Scikit-

learn-trained model.

Using Lobe.ai or Azure Custom vision. If you are using an ML SaaS (Software as a Service)

system such as Lobe.ai or Azure Custom Vision to train a model, this type of software provides

ways to export the model for many platforms, including building a bespoke API to be queried in

the cloud by your online application.

You also have the opportunity to build an entire Flask web app that would be able to train the model

itself in a web browser. This can also be done using TensorFlow.js in a JavaScript context.

For our purposes, since we have been working with Python-based notebooks, let's explore the steps

you need to take to export a trained model from such a notebook to a format readable by a Python-

built web app.

Tool

For this task, you need two tools: Flask and Pickle, both of which run on Python.

✅ What's Flask? Defined as a 'micro-framework' by its creators, Flask provides the basic features of

web frameworks using Python and a templating engine to build web pages. Take a look at this Learn

module to practice building with Flask.

✅ What's Pickle? Pickle 🥒 is a Python module that serializes and de-serializes a Python object

structure. When you 'pickle' a model, you serialize or flatten its structure for use on the web. Be

careful: pickle is not intrinsically secure, so be careful if prompted to 'un-pickle' a file. A pickled file

has the suffix .pkl .

Exercise - clean your data

https://www.tensorflow.org/lite/
https://www.tensorflow.org/js/
https://pytorch.org/
https://onnx.ai/
https://www.onnxruntime.ai/
https://lobe.ai/
https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa
https://palletsprojects.com/p/flask/
https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa
https://docs.python.org/3/library/pickle.html

In this lesson you'll use data from 80,000 UFO sightings, gathered by NUFORC (The National UFO

Reporting Center). This data has some interesting descriptions of UFO sightings, for example:

Long example description. "A man emerges from a beam of light that shines on a grassy field at

night and he runs towards the Texas Instruments parking lot".

Short example description. "the lights chased us".

The ufos.csv spreadsheet includes columns about the city , state and country where the

sighting occurred, the object's shape and its latitude and longitude .

In the blank notebook included in this lesson:

1. import pandas , matplotlib , and numpy as you did in previous lessons and import the

ufos spreadsheet. You can take a look at a sample data set:

2. Convert the ufos data to a small dataframe with fresh titles. Check the unique values in the

Country field.

3. Now, you can reduce the amount of data we need to deal with by dropping any null values and

only importing sightings between 1-60 seconds:

4. Import Scikit-learn's LabelEncoder library to convert the text values for countries to a

number:

import pandas as pd
import numpy as np

ufos = pd.read_csv('../data/ufos.csv')
ufos.head()

python

ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': u

ufos.Country.unique()

python

ufos.dropna(inplace=True)

ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]

ufos.info()

python

https://nuforc.org/

✅ LabelEncoder encodes data alphabetically

Your data should look like this:

Exercise - build your model

Now you can get ready to train a model by diving the data into the training and testing group.

1. Select the three features you want to train on as your X vector, and the y vector will be the

Country . You want to be able to input Seconds , Latitude and Longitude and get a

country id to return.

2. Train your model using logistic regression:

from sklearn.preprocessing import LabelEncoder

ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])

ufos.head()

python

 Seconds Country Latitude Longitude
2 20.0 3 53.200000 -2.916667
3 20.0 4 28.978333 -96.645833
14 30.0 4 35.823889 -80.253611
23 60.0 4 45.582778 -122.352222
24 3.0 3 51.783333 -0.783333

output

from sklearn.model_selection import train_test_split

Selected_features = ['Seconds','Latitude','Longitude']

X = ufos[Selected_features]
y = ufos['Country']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

python

The accuracy isn't bad (around 95%), unsurprisingly, as Country and Latitude/Longitude

correlate.

The model you created isn't very revolutionary as you should be able to infer a Country from its

Latitude and Longitude , but it's a good exercise to try to train from raw data that you

cleaned, exported, and then use this model in a web app.

Exercise - 'pickle' your model

Now, it's time to pickle your model! You can do that in a few lines of code. Once it's pickled, load your

pickled model and test it against a sample data array containing values for seconds, latitude and

longitude,

The model returns '3', which is the country code for the UK. Wild! 👽

Exercise - build a Flask app

Now you can build a Flask app to call your model and return similar results, but in a more visually

pleasing way.

from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

print(classification_report(y_test, predictions))
print('Predicted labels: ', predictions)
print('Accuracy: ', accuracy_score(y_test, predictions))

python

import pickle
model_filename = 'ufo-model.pkl'
pickle.dump(model, open(model_filename,'wb'))

model = pickle.load(open('ufo-model.pkl','rb'))
print(model.predict([[50,44,-12]]))

python

1. Start by creating a folder called web-app next to the notebook.ipynb file where your ufo-

model.pkl file resides.

2. In that folder create three more folders: static, with a folder css inside it, and templates`. You

should now have the following files and directories:

✅ Refer to the solution folder for a view of the finished app

3. The first file to create in web-app folder is requirements.txt file. Like package.json in a JavaScript

app, this file lists dependencies required by the app. In requirements.txt add the lines:

4. Now, run this file by navigating to web-app:

5. In your terminal type pip install , to install the libraries listed in reuirements.txt:

6. Now, you're ready to create three more files to finish the app:

1. Create app.py in the root

2. Create index.html in templates directory.

3. Create styles.css in static/css directory.

7. Build out the _styles.css__ file with a few styles:

web-app/
 static/
 css/
 templates/
notebook.ipynb
ufo-model.pk1

output

scikit-learn
pandas
numpy
flask

text

cd web-app
bash

pip install -r requirements.txt
bash

8. Next, build out the index.html file:

body {
 width: 100%;
 height: 100%;
 font-family: 'Helvetica';
 background: black;
 color: #fff;
 text-align: center;
 letter-spacing: 1.4px;
 font-size: 30px;
}

input {
 min-width: 150px;
}

.grid {
 width: 300px;
 border: 1px solid #2d2d2d;
 display: grid;
 justify-content: center;
 margin: 20px auto;
}

.box {
 color: #fff;
 background: #2d2d2d;
 padding: 12px;
 display: inline-block;
}

css

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>🛸 UFO Appearance Prediction! 👽 </title>
 <link rel="stylesheet" href="{{ url_for('static', filename='css/styles
</head>

<body>
 <div class="grid">

html

Take a look at the templating in this file. Notice the 'mustache' syntax around variables that will be

provided by the app, like the prediction text: {{}} . There's also a form that posts a prediction

to the /predict route.

Finally, you're ready to build the python file that drives the consumption of the model and the

display of predictions:

9. In app.py add:

 <div class="box">

 <p>According to the number of seconds, latitude and longitude, which c

 <form action="{{ url_for('predict')}}" method="post">
 <input type="number" name="seconds" placeholder="Seconds" requir
 <input type="text" name="latitude" placeholder="Latitude" required
 <input type="text" name="longitude" placeholder="Longitude" re
 <button type="submit" class="btn">Predict country where the UFO is
 </form>

 <p>{{ prediction_text }}</p>

 </div>
</div>

</body>
</html>

import numpy as np
from flask import Flask, request, render_template
import pickle

app = Flask(__name__)

model = pickle.load(open("../ufo-model.pkl", "rb"))

@app.route("/")
def home():
 return render_template("index.html")

python

💡 Tip: when you add debug=True while running the web app using Flask, any

changes you make to your application will be reflected immediately without the need to

restart the server. Beware! Don't enable this mode in a production app.

If you run python app.py or python3 app.py - your web server starts up, locally, and you

can fill out a short form to get an answer to your burning question about where UFOs have been

sighted!

Before doing that, take a look at the parts of app.py :

1. First, dependencies are loaded and the app starts.

2. Then, the model is imported.

3. Then, index.html is rendered on the home route.

On the /predict route, several things happen when the form is posted:

1. The form variables are gathered and converted to a numpy array. They are then sent to the model

and a prediction is returned.

2. The Countries that we want displayed are re-rendered as readable text from their predicted

country code, and that value is sent back to index.html to be rendered in the template.

@app.route("/predict", methods=["POST"])
def predict():

 int_features = [int(x) for x in request.form.values()]
 final_features = [np.array(int_features)]
 prediction = model.predict(final_features)

 output = prediction[0]

 countries = ["Australia", "Canada", "Germany", "UK", "US"]

 return render_template(
 "index.html", prediction_text="Likely country: {}".format(countr
)

if __name__ == "__main__":
 app.run(debug=True)

https://www.askpython.com/python-modules/flask/flask-debug-mode

Using a model this way, with Flask and a pickled model, is relatively straightforward. The hardest

thing is to understand what shape the data is that must be sent to the model to get a prediction. That

all depends on how the model was trained. This one has three data points to be input in order to get a

prediction.

In a professional setting, you can see how good communication is necessary between the folks who

train the model and those who consume it in a web or mobile app. In our case, it's only one person,

you!

🚀 Challenge:

Instead of working in a notebook and importing the model to the Flask app, you could train the model

right within the Flask app! Try converting your Python code in the notebook, perhaps after your data

is cleaned, to train the model from within the app on a route called train . What are the pros and

cons of pursuing this method?

Post-lecture quiz

Review & Self Study

There are many ways to build a web app to consume ML models. Make a list of the ways you could

use JavaScript or Python to build a web app to leverage machine learning. Consider architecture:

should the model stay in the app or live in the cloud? If the latter, how would you access it? Draw out

an architectural model for an applied ML web solution.

Assignment

Try a different model

Introduction to classification

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/18/

In these four lessons, you will explore a fundamental focus of classic machine learning - classification.

We will walk through using various classification algorithms with a dataset about all the brilliant

cuisines of Asia and India. Hope you're hungry!

Classification is a form of supervised learning that bears a lot in common with regression techniques.

If machine learning is all about predicting values or names to things by using datasets, then

classification generally falls into two groups: binary classification and multiclass classification.

🎥 Click the image above for a video: MIT's John Guttag introduces classification

Remember:

Linear regression helped you predict relationships between variables and make accurate

predictions on where a new datapoint would fall in relationship to that line. So, you could predict

what price a pumpkin would be in September vs. December, for example.

Logistic regression helped you discover "binary categories": at this price point, is this pumpkin

orange or not-orange?

Classification uses various algorithms to determine other ways of determining a data point's label or

class. Let's work with this cuisine data to see whether, by observing a group of ingredients, we can

determine its cuisine of origin.

Pre-lecture quiz

https://wikipedia.org/wiki/Supervised_learning
https://youtu.be/eg8DJYwdMyg
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/19/

Introduction

Classification is one of the fundamental activities of the machine learning researcher and data

scientist. From basic classification of a binary value ("is this email spam or not?"), to complex image

classification and segmentation using computer vision, it's always useful to be able to sort data into

classes and ask questions of it.

To state the process in a more scientific way, your classification method creates a predictive model

that enables you to map the relationship between input variables to output variables.

Binary vs. multiclass problems for classification algorithms to handle. Infographic by Jen

Looper

Before starting the process of cleaning our data, visualizing it, and prepping it for our ML tasks, let's

learn a bit about the various ways machine learning can be leveraged to classify data.

Derived from statistics, classification using classic machine learning uses features, such as

smoker , weight , and age to determine likelihood of developing X disease. As a supervised

learning technique similar to the regression exercises you performed earlier, your data is labeled and

the ML algorithms use those labels to classify and predict classes (or 'features') of a dataset and

assign them to a group or outcome.

https://twitter.com/jenlooper
https://wikipedia.org/wiki/Statistical_classification

✅ Take a moment to imagine a dataset about cuisines. What would a multiclass model be able to

answer? What would a binary model be able to answer? What if you wanted to determine whether a

given cuisine was likely to use fenugreek? What if you wanted to see if, given a present of a grocery

bag full of star anise, artichokes, cauliflower, and horseradish, you could create a typical Indian dish?

🎥 Click the image above for a video.The whole premise of the show 'Chopped' is the

'mystery basket' where chefs have to make some dish out of a random choice of ingredients.

Surely a ML model would have helped!

Hello 'classifier'

The question we want to ask of this cuisine dataset is actually a multiclass question, as we have

several potential national cuisines to work with. Given a batch of ingredients, which of these many

classes will the data fit?

Scikit-learn offers several different algorithms to use to classify data, depending on the kind of

problem you want to solve. In the next two lessons, you'll learn about several of these algorithms.

Exercise - clean and balance your data

The first task at hand, before starting this project, is to clean and balance your data to get better

results. Start with the blank notebook.ipynb file in the root of this folder.

https://youtu.be/GuTeDbaNoEU

The first thing to install is imblearn. This is a Scikit-learn package that will allow you to better balance

the data (you will learn more about this task in a minute).

1. To install imblearn , run pip install , like so:

2. Import the packages you need to import your data and visualize it, also import SMOTE from

imblearn .

Now you are set up to read import the data next.

3. The next task will be to import the data:

Using read_csv() will read the content of the csv file cusines.csv and place it in the variable

df .

4. Check the data's shape:

The first five rows look like this:

pip install imblearn
python

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from imblearn.over_sampling import SMOTE

python

df = pd.read_csv('../data/cuisines.csv')
python

df.head()
python

	Unnamed: 0	cuisine	almond	angelica	anise	anise_seed
0	65	indian	0	0	0	0
1	66	indian	1	0	0	0
2	67	indian	0	0	0	0
3	68	indian	0	0	0	0
4	69	indian	0	0	0	0

output

https://imbalanced-learn.org/stable/

5. Get info about this data by calling info() :

Your out resembles:

Exercise - learning about cuisines

Now the work starts to become more interesting. Let's discover the distribution of data, per cuisine

1. Plot the data as bars by calling barh() :

There are a finite number of cuisines, but the distribution of data is uneven. You can fix that!

Before doing so, explore a little more.

2. Find out how much data is available per cuisine and print it out:

df.info()
python

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2448 entries, 0 to 2447
Columns: 385 entries, Unnamed: 0 to zucchini
dtypes: int64(384), object(1)
memory usage: 7.2+ MB

output

df.cuisine.value_counts().plot.barh()
python

thai_df = df[(df.cuisine == "thai")]
japanese_df = df[(df.cuisine == "japanese")]

python

the output looks like so:

Discovering ingredients

Now you can dig deeper into the data and learn what are the typical ingredients per cuisine. You

should clean out recurrent data that creates confusion between cuisines, so let's learn about this

problem.

1. Create a function create_ingredient() in Python to create an ingredient dataframe. This

function will start by dropping an unhelpful column and sort through ingredients by their count:

Now you can use that function to get an idea of top ten most popular ingredients by cuisine.

2. Call create_ingredient() and plot it calling barh() :

chinese_df = df[(df.cuisine == "chinese")]
indian_df = df[(df.cuisine == "indian")]
korean_df = df[(df.cuisine == "korean")]

print(f'thai df: {thai_df.shape}')
print(f'japanese df: {japanese_df.shape}')
print(f'chinese df: {chinese_df.shape}')
print(f'indian df: {indian_df.shape}')
print(f'korean df: {korean_df.shape}')

thai df: (289, 385)
japanese df: (320, 385)
chinese df: (442, 385)
indian df: (598, 385)
korean df: (799, 385)

output

def create_ingredient_df(df):
 ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_f
 ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]
 ingredient_df = ingredient_df.sort_values(by='value', ascending=Fals
 inplace=False)
 return ingredient_df

python

3. Do the same for the japanese data:

4. Now for the chinese ingrediences:

chinese

5. Plot the indian ingrediences:

thai_ingredient_df = create_ingredient_df(thai_df)
thai_ingredient_df.head(10).plot.barh()

python

japanese_ingredient_df = create_ingredient_df(japanese_df)
japanese_ingredient_df.head(10).plot.barh()

python

chinese_ingredient_df = create_ingredient_df(chinese_df)
chinese_ingredient_df.head(10).plot.barh()

python

6. Finally, plot the korean ingrediences:

7. Now, drop the most common ingredients that create confusion between distinct cuisines, by

calling drop() :

Everyone loves rice, garlic and ginger!

indian_ingredient_df = create_ingredient_df(indian_df)
indian_ingredient_df.head(10).plot.barh()

python

korean_ingredient_df = create_ingredient_df(korean_df)
korean_ingredient_df.head(10).plot.barh()

python

feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], a
labels_df = df.cuisine #.unique()
feature_df.head()

python

Balance the dataset

Now that you have cleaned the data, use SMOTE - "Synthetic Minority Over-sampling Technique" -

to balance it.

1. Call fit_resample() , this strategy generates new samples by interpolation.

By balancing your data, you'll have better results when classifying it. Think about a binary

classification. If most of your data is one class, a ML model is going to predict that class more

frequently, just because there is more data for it. Balancing the data takes any skewed data and

helps remove this imbalance.

2. Now you can check the numbers of labels per ingredient:

Your output looks like so:

The data is nice and clean, balanced, and very delicious!

3. You can take one more look at the data using transformed_df.head() and

transformed_df.info() . Save a copy of this data for use in future lessons:

oversample = SMOTE()
transformed_feature_df, transformed_label_df = oversample.fit_resample(f

python

print(f'new label count: {transformed_label_df.value_counts()}')
print(f'old label count: {df.cuisine.value_counts()}')

python

new label count: korean 799
chinese 799
indian 799
japanese 799
thai 799
Name: cuisine, dtype: int64
old label count: korean 799
indian 598
chinese 442
japanese 320
thai 289
Name: cuisine, dtype: int64

output

https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html

This fresh CSV can now be found in the root data folder.

🚀Challenge

This curriculum contains several interesting datasets. Dig through the data folders and see if any

contain datasets that would be appropriate for binary or multi-class classification? What questions

would you ask of this dataset?

Post-lecture quiz

Review & Self Study

Explore SMOTE's API. What use cases is it best used for? What problems does it solve?

Assignment

Explore classification methods

Cuisine classifiers 1
In this lesson, you will use the dataset you saved from the last lesson full of balanced, clean data all

about cuisines. You will use this dataset with a variety of classifiers to predict a given national cuisine

based on a group of ingredients. While doing so, you'll learn more about some of the ways that

algorithms can be leveraged for classification tasks.

transformed_df.head()
transformed_df.info()
transformed_df.to_csv("../data/cleaned_cuisine.csv")

python

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/20/

Pre-lecture quiz

Preparation
Assuming you completed Lesson 1, make sure that a _cleaned_cuisines.csv_ file exists in the root

/data folder for these four lessons.

Working in this lesson's notebook.ipynb folder, import that file along with the Pandas library:

The data looks like this:

Now, import several more libraries:

Unnamed:

0
cuisine almond angelica anise anise_seed apple apple_brandy apric

0 0 indian 0 0 0 0 0 0 0

1 1 indian 1 0 0 0 0 0 0

2 2 indian 0 0 0 0 0 0 0

3 3 indian 0 0 0 0 0 0 0

4 4 indian 0 0 0 0 0 0 0

import pandas as pd
cuisines_df = pd.read_csv("../../data/cleaned_cuisine.csv")
cuisines_df.head()

python

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix
from sklearn.svm import SVC
import numpy as np

python

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/

Divide the X and y coordinates into two dataframes for training. cuisine can be the labels

dataframe:

It will look like this:

Drop that Unnamed: 0 column and the cuisine column and save the rest of the data as

trainable features:

Your features look like this:

Now you are ready to train your model!

Choosing your classifier

almond angelica anise anise_seed apple apple_brandy apricot armagnac artemisia

0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

cuisines_label_df = cuisines_df['cuisine']
cuisines_label_df.head()

python

0 indian
1 indian
2 indian
3 indian
4 indian
Name: cuisine, dtype: object

cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)
cuisines_feature_df.head()

python

Now that your data is clean and ready for training, you have to decide which algorithm to use for the

job.

Scikit-learn groups classification under Supervised Learning, and in that category you will find many

ways to classify. The variety is quite bewildering at first sight. The following methods all include

classification techniques:

Linear Models

Support Vector Machines

Stochastic Gradient Descent

Nearest Neighbors

Gaussian Processes

Decision Trees

Ensemble methods (voting Classifier)

Multiclass and multioutput algorithms (multiclass and multilabel classification, multiclass-

multioutput classification)

You can also use neural networks to classify data, but that is outside the scope of this lesson.

So, which classifier should you choose? Often, running through several and looking for a good result

is a way to test. Scikit-learn offers a side-by-side comparison on a created dataset, comparing

KNeighbors, SVC two ways, GaussianProcessClassifier, DecisionTreeClassifier,

RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB and

QuadraticDiscrinationAnalysis, showing the results visualized:

Plots generated on Scikit-learn's documentation

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

AutoML solves this problem neatly by running these comparisons in the cloud, allowing you to

choose the best algorithm for your data. Try it here

A better way than wildly guessing, however, is to follow the ideas on this downloadable ML Cheat

sheet. Here, we discover that, for our multiclass problem, we have some choices:

A section of Microsoft's Algorithm Cheat Sheet, detailing multiclass classification options

✅ Download this cheat sheet, print it out, and hang it on your wall!

Given our clean, but minimal dataset, and the fact that we are running training locally via notebooks,

neural networks are too heavyweight for this task. We do not use a two-class classifier, so that rules

out one-vs-all. A decision tree might work, or logistic regression for multiclass data. The multiclass

https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa
https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa

boosted decision tree is most suitable for nonparametric tasks, e.g. tasks designed to build rankings,

so it is not useful for us.

We can focus on logistic regression for our first training trial since you recently learned about the

latter in a previous lesson.

Train your model

Let's train a model. Split your data into training and testing groups:

There are many ways to use the LogisticRegression library in Scikit-learn. Take a look at the

parameters to pass.

According to the docs, "In the multiclass case, the training algorithm uses the one-vs-rest (OvR)

scheme if the ‘multi_classʼ option is set to ‘ovr ,̓ and uses the cross-entropy loss if the ‘multi_classʼ

option is set to ‘multinomial̓. (Currently the ‘multinomial̓ option is supported only by the ‘lbfgs,̓ ‘sag,̓

‘sagaʼ and ‘newton-cgʼ solvers.)"

Since you are using the multiclass case, you need to choose what scheme to use and what 'solver' to

set.

Use LogisticRegression with a multiclass setting and the liblinear solver to train.

🎓 The 'scheme' here can either be 'ovr' (one-vs-rest) or 'multinomial'. Since logistic

regression is really designed to support binary classification, these schemes allow it to better

handle multiclass classification tasks. source

🎓 The 'solver' is defined as "the algorithm to use in the optimization problem". source.

Scikit-learn offers this table to explain how solvers handle different challenges presented by different

kinds of data structures:

X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cu
python

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression

✅ Try a different solver like lbfgs , which is often set as default

Note, use Pandas ravel function to flatten your data when needed.

The accuracy is good at over 80%!

You can see this model in action by testing one row of data (#50):

The result is printed:

✅ Try a different row number and check the results

Digging deeper, you can check for the accuracy of this prediction:

lr = LogisticRegression(multi_class='ovr',solver='liblinear')
model = lr.fit(X_train, np.ravel(y_train))

accuracy = model.score(X_test, y_test)
print ("Accuracy is {}".format(accuracy))

python

print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')
print(f'cuisine: {y_test.iloc[50]}')

python

ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegeta
cuisine: indian

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html

The result is printed - Indian cuisine is its best guess, with good probability:

0

indian 0.715851

chinese 0.229475

japanese 0.029763

korean 0.017277

thai 0.007634

✅ Can you explain why the model is pretty sure this is an Indian cuisine?

Get more detail by printing a classification report, as you did in the regression lessons:

precision recall f1-score support

chinese 0.73 0.71 0.72 229

indian 0.91 0.93 0.92 254

japanese 0.70 0.75 0.72 220

korean 0.86 0.76 0.81 242

test= X_test.iloc[50].values.reshape(-1, 1).T
proba = model.predict_proba(test)
classes = model.classes_
resultdf = pd.DataFrame(data=proba, columns=classes)

topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])
topPrediction.head()

python

y_pred = model.predict(X_test)
print(classification_report(y_test,y_pred))

python

precision recall f1-score support

thai 0.79 0.85 0.82 254

accuracy 0.80 1199

macro avg 0.80 0.80 0.80 1199

weighted avg 0.80 0.80 0.80 1199

🚀Challenge

In this lesson, you used your cleaned data to build a machine learning model that can predict a

national cuisine based on a series of ingredients. Take some time to read through the many options

Scikit-learn provides to classify data. Dig deeper into the concept of 'solver' to understand what goes

on behind the scenes.

Post-lecture quiz

Review & Self Study

Dig a little more into the math behind logistic regression in this lesson

Assignment

Study the solvers

Cuisine classifiers 2
In this second classification lesson, you will explore more ways to classify numeric data. You will also

learn about the ramifications for choosing one over the other.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/
https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf

Pre-lecture quiz

Prerequisite

We assume that you have completed the previous lessons and have a cleaned dataset in your

data folder called _cleaned_cuisine.csv_ in the root of this 4-lesson folder.

Preparation

We have loaded your notebook.ipynb file with the cleaned dataset and have divided it into X and y

dataframes, ready for the model building process.

A classification map

Previously, you learned about the various options you have when classifying data using Microsoft's

cheat sheet. Scikit-learn offers a similar, but more granular cheat sheet that can further help narrow

down your estimators (another term for classifiers):

Tip: visit this map online and click along the path to read documentation.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/23/
https://scikit-learn.org/stable/tutorial/machine_learning_map/

This map is very helpful once you have a clear grasp of your data, as you can 'walk' along its paths to

a decision:

We have >50 samples

We want to predict a category

We have labeled data

We have fewer than 100K samples

✨ We can choose a Linear SVC

If that doesn't work, since we have numeric data

We can try a ✨ KNeighbors Classifier

If that doesn't work, try ✨ SVC and ✨ Ensemble Classifiers

This is a very helpful trail to follow. Following this path, we should start by importing some libraries to

use:

Split your training and test data:

Linear SVC classifier

Start by creating an array of classifiers. You will add progressively to this array as we test. Start with a

Linear SVC:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix
import numpy as np

python

X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cu
python

C = 10
Create different classifiers.
classifiers = {
 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0
}

python

Train your model using the Linear SVC and print out a report:

The result is pretty good:

✅ Learn about Linear SVC

Support-Vector clustering (SVC) is a child of the Support-Vector machines family of ML techniques

(learn more about these below). In this method, you can choose a 'kernel' to decide how to cluster

the labels. The 'C' parameter refers to 'regularization' which regulates the influence of parameters.

The kernel can be one of several; here we set it to 'linear' to ensure that we leverage linear SVC.

Probability defaults to 'false'; here we set it to 'true' to gather probability estimates. We set the

random state to '0' to shuffle the data to get probabilities.

K-Neighbors classifier

n_classifiers = len(classifiers)

for index, (name, classifier) in enumerate(classifiers.items()):
 classifier.fit(X_train, np.ravel(y_train))

 y_pred = classifier.predict(X_test)
 accuracy = accuracy_score(y_test, y_pred)
 print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
 print(classification_report(y_test,y_pred))

python

Accuracy (train) for Linear SVC: 78.6%
 precision recall f1-score support

 chinese 0.71 0.67 0.69 242
 indian 0.88 0.86 0.87 234
 japanese 0.79 0.74 0.76 254
 korean 0.85 0.81 0.83 242
 thai 0.71 0.86 0.78 227

 accuracy 0.79 1199
 macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

The previous classifier was good, and worked well with the data, but maybe we can get better

accuracy. Try a K-Neighbors classifier. Add a line to your classifier array (add a comma after the

Linear SVC item):

The result is a little worse:

✅ Learn about K-Neighbors

K-Neighbors is part of the "neighbors" family of ML methods, which can be used for both supervised

and unsupervised learning. In this method, a predefined number of points is created and data are

gathered around these points such that generalized labels can be predicted for the data.

Support Vector Classifier

Let's try for a little better accuracy with a Support Vector Classifier. Add a comma after the K-

Neighbors item, and then add this line:

The result is quite good!

'KNN classifier': KNeighborsClassifier(C),
python

Accuracy (train) for KNN classifier: 73.8%
 precision recall f1-score support

 chinese 0.64 0.67 0.66 242
 indian 0.86 0.78 0.82 234
 japanese 0.66 0.83 0.74 254
 korean 0.94 0.58 0.72 242
 thai 0.71 0.82 0.76 227

 accuracy 0.74 1199
 macro avg 0.76 0.74 0.74 1199
weighted avg 0.76 0.74 0.74 1199

'SVC': SVC(),
python

https://scikit-learn.org/stable/modules/neighbors.html#neighbors

✅ Learn about Support-Vectors

Support-Vector classifiers are part of the Support-Vector Machine family of ML methods that are

used for classification and regression tasks. SVMs "map training examples to points in space" to

maximize the distance between two categories. Subsequent data is mapped into this space so their

category can be predicted.

Ensemble Classifiers

Let's follow the path to the very end, even though the previous test was quite good. Let's try some

'Ensemble Classifiers, specifically Random Forest and AdaBoost:

The result is very good, especially for Random Forest:

Accuracy (train) for SVC: 83.2%
 precision recall f1-score support

 chinese 0.79 0.74 0.76 242
 indian 0.88 0.90 0.89 234
 japanese 0.87 0.81 0.84 254
 korean 0.91 0.82 0.86 242
 thai 0.74 0.90 0.81 227

 accuracy 0.83 1199
 macro avg 0.84 0.83 0.83 1199
weighted avg 0.84 0.83 0.83 1199

'RFST': RandomForestClassifier(n_estimators=100),
 'ADA': AdaBoostClassifier(n_estimators=100)

Accuracy (train) for RFST: 84.5%
 precision recall f1-score support

 chinese 0.80 0.77 0.78 242
 indian 0.89 0.92 0.90 234
 japanese 0.86 0.84 0.85 254
 korean 0.88 0.83 0.85 242
 thai 0.80 0.87 0.83 227

https://scikit-learn.org/stable/modules/svm.html#svm
https://wikipedia.org/wiki/Support-vector_machine

✅ Learn about Ensemble Classifiers

This method of Machine Learning "combines the predictions of several base estimators" to improve

the model's quality. In our example, we used Random Trees and AdaBoost.

Random Forest, an averaging method, builds a 'forest' of 'decision trees' infused with

randomness to avoid overfitting. The n_estimators parameter is set to the number of trees.

AdaBoost fits a classifier to a dataset and then fits copies of that classifier to the same dataset. It

focuses on the weights of incorrectly classified items and adjusts the fit for the next classifier to

correct.

🚀Challenge

Each of these techniques has a large number of parameters that you can tweak. Research each one's

default parameters and think about what tweaking these parameters would mean for the model's

quality.

Post-lecture quiz

 accuracy 0.84 1199
 macro avg 0.85 0.85 0.84 1199
weighted avg 0.85 0.84 0.84 1199

Accuracy (train) for ADA: 72.4%
 precision recall f1-score support

 chinese 0.64 0.49 0.56 242
 indian 0.91 0.83 0.87 234
 japanese 0.68 0.69 0.69 254
 korean 0.73 0.79 0.76 242
 thai 0.67 0.83 0.74 227

 accuracy 0.72 1199
 macro avg 0.73 0.73 0.72 1199
weighted avg 0.73 0.72 0.72 1199

https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/24/

Review & Self Study

There's a lot of jargon in these lessons, so take a minute to review this list of useful terminology!

Assignment

Parameter play

Build a Cuisine Recommender Web App
In this lesson, you will build a classification model using some of the techniques you have learned in

previous lessons and with the delicious cuisine dataset used throughout this series. In addition, you

will build a small web app to use a saved model, leveraging Onnx's web runtime.

One of the most useful practical uses of machine learning is building recommendation systems, and

you can take the first step in that direction today!

🎥 Click the image above for a video: Andrew Ng introduces recommendation system design

Pre-lecture quiz

https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-15963-cxa
https://youtu.be/giIXNoiqO_U
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/25/

In this lesson you will learn:

How to build a model and save it as an Onnx model

How to use Netron to inspect the model

How to use your model in a web app for inference

Build your model

Building applied ML systems is an important part of leveraging these technologies for your business

systems. You can use models within your web applications (and thus use them in an offline context if

needed) by using Onnx. In a previous lesson, you built a Regression model about UFO sightings,

"pickled" it, and used it in a Flask app. While this architecture is very useful to know it is a full-stack

Python app, and your requirements may include the use of a JavaScript application. In this lesson,

you can build a basic JavaScript-based system for inference. First, however, you need to train a

model and convert it for use with Onnx.

First, train a classification model using the cleaned cuisines dataset we used. Start by importing

useful libraries:

You need 'skl2onnx' to help convert your Scikit-learn model to Onnx format.

Then, work with your data in the same way you did in previous lessons:

Remove the first two unnecessary columns and save the remaining data as 'X':

Save the labels as 'y':

pip install skl2onnx
import pandas as pd

python

data = pd.read_csv('../data/cleaned_cuisine.csv')
data.head()

python

X = data.iloc[:,2:]
X.head()

python

https://onnx.ai/sklearn-onnx/

Commence the training routine. We will use the 'SVC' library which has good accuracy. Import the

appropriate libraries from Scikit-learn:

Separate training and test sets:

Build an SVC Classification model as you did in the previous lesson:

Now, test your model:

Print out a classification report to check the model's quality:

As we saw before, the accuracy is good:

y = data[['cuisine']]
y.head()

python

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix

python

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
python

model = SVC(kernel='linear', C=10, probability=True,random_state=0)
model.fit(X_train,y_train.values.ravel())

python

y_pred = model.predict(X_test)
python

print(classification_report(y_test,y_pred))
python

 precision recall f1-score support

 chinese 0.72 0.69 0.70 257
 indian 0.91 0.87 0.89 243
 japanese 0.79 0.77 0.78 239

Now, convert your model to Onnx. Make sure to do the conversion with the proper Tensor number.

This dataset has 380 ingredients listed, so you need to notate that number in FloatTensorType :

Note, you can pass in options in your conversion script. In this case, we passed in 'nocl' to be

True and 'zipmap' to be False. Since this is a classification model, you have the option to

remove ZipMap which produces a list of dictionaries (not necessary). nocl refers to class

information being included in the model. Reduce your model's size by setting nocl to

'True'.

Running the entire notebook will now build an Onnx model and save it to this folder.

View your model

Onnx models are not very visible in Visual Studio code, but there's a very good free software that

many researchers use to visualize the model to ensure that it is properly built. Download Netron and

open your model.onnx file. You can see your simple model visualized, with its 380 inputs and

classifier listed:

 korean 0.83 0.79 0.81 236
 thai 0.72 0.84 0.78 224

 accuracy 0.79 1199
 macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199

from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType

initial_type = [('float_input', FloatTensorType([None, 380]))]
options = {id(model): {'nocl': True, 'zipmap': False}}
onx = convert_sklearn(model, initial_types=initial_type, options=options)
with open("./model.onnx", "wb") as f:
 f.write(onx.SerializeToString())

python

https://onnx.ai/sklearn-onnx/parameterized.html
https://github.com/lutzroeder/Netron

Netron is a helpful tool to view your models.

Now you are ready to use this neat model in a web app. Let's build an app that will come in handy

when you look in your refrigerator and try to figure out which combination of your leftover ingredients

you can use to cook a given cuisine, as determined by your model.

Build a recommender web application

You can use your model directly in a web app. This architecture also allows you to run it locally and

even offline if needed. Start by creating an index.html file in the same folder where you stored

your model.onnx file.

In this file, add the following markup:

<!DOCTYPE html>
<html>
 <header>
 <title>Cuisine Matcher</title>
 </header>
 <body>
 ...
 </body>
</html>

html

Now, working within the body tags, add a little markup to show a list of checkboxes reflecting

some ingredients:

<h1>Check your refrigerator. What can you create?</h1>
 <div id="wrapper">
 <div class="boxCont">
 <input type="checkbox" value="4" class="checkbox">
 <label>apple</label>
 </div>

 <div class="boxCont">
 <input type="checkbox" value="247" class="checkbox">
 <label>pear</label>
 </div>

 <div class="boxCont">
 <input type="checkbox" value="77" class="checkbox">
 <label>cherry</label>
 </div>

 <div class="boxCont">
 <input type="checkbox" value="126" class="checkbox">
 <label>fenugreek</label>
 </div>

 <div class="boxCont">
 <input type="checkbox" value="302" class="checkbox">
 <label>sake</label>
 </div>

 <div class="boxCont">
 <input type="checkbox" value="327" class="checkbox">
 <label>soy sauce</label>
 </div>

 <div class="boxCont">
 <input type="checkbox" value="112" class="checkbox">
 <label>cumin</label>
 </div>
 </div>
 <div style="padding-top:10px">
 <button onClick="startInference()">What kind of cuisine can you
 </div>

html

Notice that each checkbox is given a value. This reflects the index where the ingredient is found

according to the dataset. Apple, for example, in this alphabetic list, occupies the fifth column, so its

value is '4' since we start counting at 0. You can consult the ingredients spreadsheet to discover a

given ingredient's index.

Continuing your work in the index.html file, add a script block where the model is called after the final

closing </div> . First, import the Onnx Runtime:

Onnx Runtime is used to enable running your Onnx models across a wide range of hardware

platforms, including optimizations and an API to use.

Once the Runtime is in place, you can call it:

<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.8.0-dev.2021060
html

<script>
 const ingredients = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 const checks = [].slice.call(document.querySelectorAll('.checkb

 // use an async context to call onnxruntime functions.
 function init() {

 checks.forEach(function (checkbox, index) {
 checkbox.onchange = function () {
 if (this.checked) {
 var index = checkbox.value;

 if (index !== -1) {
 ingredients[index] = 1;
 }
 console.log(ingredients)
 }
 else {
 var index = checkbox.value;

 if (index !== -1) {
 ingredients[index] = 0;
 }

javascript

https://www.onnxruntime.ai/

 console.log(ingredients)
 }
 }
 })
 }

 function testCheckboxes() {
 for (var i = 0; i < checks.length; i++)
 if (checks[i].type == "checkbox")
 if (checks[i].checked)
 return true;
 return false;
 }

 async function startInference() {

 let checked = testCheckboxes()

 if (checked) {

 try {
 // create a new session and load the model.

 const session = await ort.InferenceSession.create('./mo

 const input = new ort.Tensor(new Float32Array(ingredien
 const feeds = { float_input: input };

 // feed inputs and run

 const results = await session.run(feeds);

 // read from results
 alert('You can enjoy ' + results.label.data[0] + ' cuis

 } catch (e) {
 console.log(`failed to inference ONNX model: ${e}.`);
 }
 }
 else alert("Please check an ingredient")

 }
 init();

In this code, there are several things happening:

1. You created an array of 380 possible values (1 or 0) to be set and sent to the model for inference,

depending on whether an ingredient checkbox is checked.

2. You created an array of checkboxes and a way to determine whether they were checked in an

init function that is called when the application starts. When a checkbox is checked, the

ingredients array is altered to reflect the chosen ingredient.

3. You created a testCheckboxes function that checks whether any checkbox was checked.

4. You use that function when the button is pressed and, if any checkbox is checked, you start

inference.

5. The inference routine includes:

1. Setting up an asyncronous load of the model

2. Creating a Tensor structure to send to the model

3. Creating 'feeds' that reflects the float_input input that you created when training your

model (you can use Netron to verify that name)

4. Sending these 'feeds' to the model and waiting for a response

Test your application

Open a terminal session in Visual Studio Code in the folder where your index.html file resides. Ensure

that you have [http-server](https://www.npmjs.com/package/http-server) installed

globally, and type http-server at the prompt. A localhost should open and you can view your

web app. Check what cuisine is recommended based on various ingredients:

 </script>

Congratulations, you have created a simple web app recommendation with a few fields. Take some

time to build out this system!

🚀Challenge

Your web app is very minimal, so continue to build it out using ingredients and their indexes from the

ingredient_indexes data. What flavor combinations work to create a given national dish?

Post-lecture quiz

Review & Self Study

While this lesson just touched on the utility of creating a recommendation system for food

ingredients, this area of ML applications is very rich in examples. Read some more about how these

systems are built:

https://www.sciencedirect.com/topics/computer-science/recommendation-engine

https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-

recommendation-engines/

https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/

Assignment

Build a new recommender

Introduction to clustering
Clustering is a type of Unsupervised Learning that presumes that a dataset is unlabelled or that its

inputs are not matched with predefined outputs. It uses various algorithms to sort through unlabeled

data and provide groupings according to patterns it discerns in the data.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/26/
https://www.sciencedirect.com/topics/computer-science/recommendation-engine
https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/
https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/
https://wikipedia.org/wiki/Unsupervised_learning

🎥 Click the image above for a video. While you're studying machine learning with clustering,

enjoy some Nigerian Dance Hall tracks - this is a highly rated song from 2014 by PSquare.

Pre-lecture quiz

Introduction

Clustering is very useful for data exploration. Let's see if it can help discover trends and patterns in

the way Nigerian audiences consume music.

✅ Take a minute to think about the uses of clustering. In real life, clustering happens whenever you

have a pile of laundry and need to sort out your family members' clothes 🧦 👕 👖 🩲 . In data

science, clustering happens when trying to analyze a user's preferences, or determine the

characteristics of any unlabeled dataset. Clustering, in a way, helps make sense of chaos, like a sock

drawer.

https://youtu.be/ty2advRiWJM
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/27/
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124

🎥 Click the image above for a video: MIT's John Guttag introduces clustering

In a professional setting, clustering can be used to determine things like market segmentation,

determining what age groups buy what items, for example. Another use would be anomaly detection,

perhaps to detect fraud from a dataset of credit card transactions. Or you might use clustering to

determine tumors in a batch of medical scans.

✅ Think a minute about how you might have encountered clustering 'in the wild', in a banking, e-

commerce, or business setting.

🎓 Interestingly, cluster analysis originated in the fields of Anthropology and Psychology in

the 1930s. Can you imagine how it might have been used?

Alternately, you could use it for grouping search results - by shopping links, images, or reviews, for

example. Clustering is useful when you have a large dataset that you want to reduce and on which

you want to perform more granular analysis, so the technique can be used to learn about data before

other models are constructed.

✅ Once your data is organized in clusters, you assign it a cluster Id, and this technique can be useful

when preserving a dataset's privacy; you can instead refer to a data point by its cluster id, rather than

by more revealing identifiable data. Can you think of other reasons why you'd refer to a cluster Id

rather than other elements of the cluster to identify it?

https://youtu.be/esmzYhuFnds

Deepen your understanding of clustering techniques in this Learn module

Getting started with clustering

Scikit-learn offers a large array of methods to perform clustering. The type you choose will depend

on your use case. According to the documentation, each method has various benefits. Here is a

simplified table of the methods supported by Scikit-learn and their appropriate use cases:

Method name Use case

K-Means general purpose, inductive

Affinity propagation many, uneven clusters, inductive

Mean-shift many, uneven clusters, inductive

Spectral clustering few, even clusters, transductive

Ward hierarchical

clustering
many, constrained clusters, transductive

Agglomerative clustering many, constrained, non Euclidean distances, transductive

DBSCAN non-flat geometry, uneven clusters, transductive

OPTICS
non-flat geometry, uneven clusters with variable density,

transductive

Gaussian mixtures flat geometry, inductive

BIRCH large dataset with outliers, inductive

🎓 How we create clusters has a lot to do with how we gather up the data points into groups.

Let's unpack some vocabulary:

🎓 'Transductive' vs. 'inductive'

Transductive inference is derived from observed training cases that map to specific test

cases. Inductive inference is derived from training cases that map to general rules which are

https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-15963-cxa
https://scikit-learn.org/stable/modules/clustering.html
https://wikipedia.org/wiki/Transduction_(machine_learning)

only then applied to test cases.

An example: Imagine you have a dataset that is only partially labelled. Some things are

'records', some 'cds', and some are blank. Your job is to provide labels for the blanks. If you

choose an inductive approach, you'd train a model looking for 'records' and 'cds', and apply

those labels to your unlabeled data. This approach will have trouble classifying things that are

actually 'cassettes'. A transductive approach, on the other hand, handles this unknown data

more effectively as it works to group similar items together and then applies a label to a

group. In this case, clusters might reflect 'round musical things' and 'square musical things'.

🎓 'Non-flat' vs. 'flat' geometry

Derived from mathematical terminology, non-flat vs. flat geometry refers to the measure of

distances between points by either 'flat' (Euclidean) or 'non-flat' (non-Euclidean) geometrical

methods.

'Flat' in this context refers to Euclidean geometry (parts of which are taught as 'plane'

geometry), and non-flat refers to non-Euclidean geometry. What does geometry have to do

with machine learning? Well, as two fields that are rooted in mathematics, there must be a

common way to measure distances between points in clusters, and that can be done in a 'flat'

or 'non-flat' way, depending on the nature of the data. Euclidean distances are measured as

the length of a line segment between two points. Non-Euclidean distances are measured

along a curve. If your data, visualized, seems to not exist on a plane, you might need to use a

specialized algorithm to handle it.

https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering
https://wikipedia.org/wiki/Euclidean_geometry
https://wikipedia.org/wiki/Euclidean_distance
https://wikipedia.org/wiki/Non-Euclidean_geometry

Infographic by Dasani Madipalli

🎓 'Distances'

Clusters are defined by their distance matrix, e.g. the distances between points. This distance

can be measured a few ways. Euclidean clusters are defined by the average of the point

values, and contain a 'centroid' or center point. Distances are thus measured by the distance

to that centroid. Non-Euclidean distances refer to 'clustroids', the point closest to other

points. Clustroids in turn can be defined in various ways.

🎓 'Constrained'

Constrained Clustering introduces 'semi-supervised' learning into this unsupervised method.

The relationships between points are flagged as 'cannot link' or 'must-link' so some rules are

forced on the dataset.

An example: If an algorithm is set free on a batch of unlabelled or semi-labelled data, the

clusters it produces may be of poor quality. In the example above, the clusters might group

'round music things' and 'square music things' and 'triangular things' and 'cookies'. If given

some constraints, or rules to follow ("the item must be made of plastic", "the item needs to be

able to produce music") this can help 'constrain' the algorithm to make better choices.

🎓 'Density'

https://twitter.com/dasani_decoded
https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf
https://wikipedia.org/wiki/Constrained_clustering
https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf

Data that is 'noisy' is considered to be 'dense'. The distances between points in each of its

clusters may prove, on examination, to be more or less dense, or 'crowded' and thus this data

needs to be analyzed with the appropriate clustering method. This article demonstrates the

difference between using K-Means clustering vs. HDBSCAN algorithms to explore a noisy

dataset with uneven cluster density.

Clustering algorithms

There are over 100 clustering algorithms, and their use depends on the nature of the data at hand.

Let's discuss some of the major ones:

Hierarchical clustering

If an object is classified by its proximity to a nearby object, rather than to one farther away, clusters

are formed based on their members' distance to and from other objects. Scikit-learn's agglomerative

clustering is hierarchical.

Infographic by Dasani Madipalli

https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html
https://twitter.com/dasani_decoded

Centroid clustering

This popular algorithm requires the choice of 'k', or the number of clusters to form, after which the

algorithm determines the center point of a cluster and gathers data around that point. K-means

clustering is a popular version of centroid clustering. The center is determined by the nearest mean,

thus the name. The squared distance from the cluster is minimized.

Infographic by Dasani Madipalli

Distribution-based clustering

Based in statistical modeling, distribution-based clustering centers on determining the probability

that a data point belongs to a cluster, and assigning it accordingly. Gaussian mixture methods belong

to this type.

Density-based clustering

Data points are assigned to clusters based on their density, or their grouping around each other. Data

points far from the group are considered outliers or noise. DBSCAN, Mean-shift and OPTICS belong

to this type of clustering.

Grid-based clustering

https://wikipedia.org/wiki/K-means_clustering
https://twitter.com/dasani_decoded

For multi-dimensional datasets, a grid is created and the data is divided amongst the grid's cells,

thereby creating clusters.

Preparing the data

Clustering as a technique is greatly aided by proper visualization, so let's get started by visualizing

our music data. This exercise will help us decide which of the methods of clustering we should most

effectively use for the nature of this data.

Open the notebook.ipynb file in this folder. Import the Seaborn package for good data visualization.

Append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to

explore this data by importing the libraries and dumping out the data:

Check the first few lines of data:

name album artist artist_top_genre release_date length popularity

0 Sparky
Mandy & The

Jungle

Cruel

Santino
alternative r&b 2019 144000 48

1
shuga

rush

EVERYTHING

YOU HEARD

IS TRUE

Odunsi

(The

Engine)

afropop 2020 89488 30

2 LITT! LITT! AYLØ indie r&b 2018 207758 40

3

Confident

/ Feeling

Cool

Enjoy Your

Life

Lady

Donli
nigerian pop 2019 175135 14

pip install seaborn
python

import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_csv("../data/nigerian-songs.csv")
df.head()

python

Get some information about the dataframe:

Double-check for null values:

Looking good:

name album artist artist_top_genre release_date length popularity

4
wanted

you
rare.

Odunsi

(The

Engine)

afropop 2018 152049 25

df.info()
python

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 530 entries, 0 to 529
Data columns (total 16 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 name 530 non-null object
 1 album 530 non-null object
 2 artist 530 non-null object
 3 artist_top_genre 530 non-null object
 4 release_date 530 non-null int64
 5 length 530 non-null int64
 6 popularity 530 non-null int64
 7 danceability 530 non-null float64
 8 acousticness 530 non-null float64
 9 energy 530 non-null float64
 10 instrumentalness 530 non-null float64
 11 liveness 530 non-null float64
 12 loudness 530 non-null float64
 13 speechiness 530 non-null float64
 14 tempo 530 non-null float64
 15 time_signature 530 non-null int64
dtypes: float64(8), int64(4), object(4)
memory usage: 66.4+ KB

df.isnull().sum()
python

Describe the data:

release_date length popularity danceability acousticness energy inst

count 530 530 530 530 530 530 530

mean 2015.390566 222298.1698 17.507547 0.741619 0.265412 0.760623 0.01

std 3.131688 39696.82226 18.992212 0.117522 0.208342 0.148533 0.09

min 1998 89488 0 0.255 0.000665 0.111 0

25% 2014 199305 0 0.681 0.089525 0.669 0

50% 2016 218509 13 0.761 0.2205 0.7845 0.00

75% 2017 242098.5 31 0.8295 0.403 0.87575 0.00

max 2020 511738 73 0.966 0.954 0.995 0.91

name 0
album 0
artist 0
artist_top_genre 0
release_date 0
length 0
popularity 0
danceability 0
acousticness 0
energy 0
instrumentalness 0
liveness 0
loudness 0
speechiness 0
tempo 0
time_signature 0
dtype: int64

df.describe()
python

🤔 If we are working with clustering, an unsupervised method that does not require labeled

data, why are we showing this data with labels? In the data exploration phase, they come in

handy, but they are not necessary for the clustering algorithms to work. You could just as well

remove the column headers and refer to the data by column number.

Look at the general values of the data. Note that popularity can be '0', which show songs that have no

ranking. Let's remove those shortly.

Use a barplot to find out the most popular genres:

✅ If you'd like to see more top values, change the top [:5] to a bigger value, or remove it to see

all.

import seaborn as sns

top = df['artist_top_genre'].value_counts()
plt.figure(figsize=(10,7))
sns.barplot(x=top[:5].index,y=top[:5].values)
plt.xticks(rotation=45)
plt.title('Top genres',color = 'blue')

python

Note, when the top genre is described as 'Missing', that means that Spotify did not classify it, so let's

get rid of it:

Now recheck the genres:

By far, the top three genres dominate this dataset, so let's concentrate on afro dancehall ,

afropop , and nigerian pop , also filtering the dataset to remove anything with a 0 popularity

value (meaning it was not classified with a popularity in the dataset and can be considered noise for

our purposes):

df = df[df['artist_top_genre'] != 'Missing']
top = df['artist_top_genre'].value_counts()
plt.figure(figsize=(10,7))
sns.barplot(x=top.index,y=top.values)
plt.xticks(rotation=45)
plt.title('Top genres',color = 'blue')

python

df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genr
df = df[(df['popularity'] > 0)]
top = df['artist_top_genre'].value_counts()
plt.figure(figsize=(10,7))
sns.barplot(x=top.index,y=top.values)

python

Do a quick test to see if the data correlates in any particularly strong way:

The only strong correlation is between energy and loudness, which is not too surprising, given that

loud music is usually pretty energetic. Otherwise, the correlations are relatively weak. It will be

interesting to see what a clustering algorithm can make of this data.

🎓 Note that correlation does not imply causation! We have proof of correlation but no proof

of causation. An amusing web site has some visuals that emphasize this point.

plt.xticks(rotation=45)
plt.title('Top genres',color = 'blue')

corrmat = df.corr()
f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True);

python

https://tylervigen.com/spurious-correlations

Is there any convergence in this dataset around a song's perceived popularity and danceability? A

FacetGrid shows that there are concentric circles that line up, regardless of genre. Could it be that

Nigerian tastes converge at a certain level of danceability for this genre?

✅ Try different datapoints (energy, loudness, speechiness) and more or different musical genres.

What can you discover? Take a look at the df.describe() table to see the general spread of the

data points.

Data distribution

Are these three genres significantly different in the perception of their danceability, based on their

popularity? Examine our top three genres data distribution for popularity and danceability along a

given x and y axis.

You can discover concentric circles around a general point of convergence, showing the distribution

of points.

🎓 Note that this example uses a KDE (Kernel Density Estimate) graph that represents the

data using a continuous probability density curve. This allows us to interpret data when

working with multiple distributions.

In general, the three genres align loosely in terms of their popularity and danceability. Determining

clusters in this loosely-aligned data will be a challenge:

sns.set_theme(style="ticks")

g = sns.jointplot(
 data=df,
 x="popularity", y="danceability", hue="artist_top_genre",
 kind="kde",
)

python

A scatterplot of the same axes shows a similar pattern of convergence:

In general, for clustering, you can use scatterplots to show clusters of data, so mastering this type of

visualization is very useful. In the next lesson, we will take this filtered data and use k-means

clustering to discover groups in this data that see to overlap in interesting ways.

sns.FacetGrid(df, hue="artist_top_genre", size=5) \
 .map(plt.scatter, "popularity", "danceability") \
 .add_legend()

python

🚀Challenge

In preparation for the next lesson, make a chart about the various clustering algorithms you might

discover and use in a production environment. What kinds of problems is the clustering trying to

address?

Post-lecture quiz

Review & Self Study

Before you apply clustering algorithms, as we have learned, it's a good idea to understand the nature

of your dataset. Read more onn this topic here

This helpful article walks you through the different ways that various clustering algorithms behave,

given different data shapes.

Assignment

Research other visualizations for clustering

K-Means clustering

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/28/
https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html
https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/

🎥 Click the image above for a video: Andrew Ng explains clustering

Pre-lecture quiz

In this lesson, you will learn how to create clusters using Scikit-learn and the Nigerian music dataset

you imported earlier. We will cover the basics of K-Means for Clustering. Keep in mind that, as you

learned in the earlier lesson, there are many ways to work with clusters and the method you use

depends on your data. We will try K-Means as it's the most common clustering technique. Let's get

started!

Terms you will learn about:

Silhouette scoring

Elbow method

Inertia

Variance

Introduction

K-Means Clustering is a method derived from the domain of signal processing. It is used to divide and

partition groups of data into 'k' clusters using a series of observations. Each observation works to

group a given datapoint closest to its nearest 'mean', or the center point of a cluster. The clusters can

be visualized as Voronoi diagrams, which include a point (or 'seed') and its corresponding region.

https://youtu.be/hDmNF9JG3lo
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/29/
https://wikipedia.org/wiki/K-means_clustering
https://wikipedia.org/wiki/Voronoi_diagram

infographic by Jen Looper

The K-Means clustering process executes in a three-step process:

1. The algorithm selects k-number of center points by sampling from the dataset. After this, it loops:

1. It assigns each sample to the nearest centroid

2. It creates new centroids by taking the mean value of all of the samples assigned to the

previous centroids.

3. Then, it calculates the difference between the new and old centroids and repeats until the

centroids are stablized.

One drawback of using K-Means includes the fact that you will need to establish 'k', that is the

number of centroids. Fortunately the 'elbow method' helps to estimate a good starting value for 'k'.

You'll try it in a minute.

Prerequisite

https://twitter.com/jenlooper
https://scikit-learn.org/stable/modules/clustering.html#k-means

You will work in this lesson's notebook.ipynb file that includes the data import and preliminary

cleaning you did in the last lesson.

Preparation

Start by taking another look at the songs data. This data is a little noisy: by observing each column as

a boxplot, you can see outliers:

plt.figure(figsize=(20,20), dpi=200)

plt.subplot(4,3,1)
sns.boxplot(x = 'popularity', data = df)

plt.subplot(4,3,2)
sns.boxplot(x = 'acousticness', data = df)

plt.subplot(4,3,3)
sns.boxplot(x = 'energy', data = df)

plt.subplot(4,3,4)
sns.boxplot(x = 'instrumentalness', data = df)

plt.subplot(4,3,5)
sns.boxplot(x = 'liveness', data = df)

plt.subplot(4,3,6)
sns.boxplot(x = 'loudness', data = df)

plt.subplot(4,3,7)
sns.boxplot(x = 'speechiness', data = df)

plt.subplot(4,3,8)
sns.boxplot(x = 'tempo', data = df)

plt.subplot(4,3,9)
sns.boxplot(x = 'time_signature', data = df)

plt.subplot(4,3,10)
sns.boxplot(x = 'danceability', data = df)

plt.subplot(4,3,11)
sns.boxplot(x = 'length', data = df)

python

You could go through the dataset and remove these outliers, but that would make the data pretty

minimal. For now, choose which columns you will use for your clustering exercise. Pick ones with

similar ranges and encode the artist_top_genre column as numeric data:

plt.subplot(4,3,12)
sns.boxplot(x = 'release_date', data = df)

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness

y = df['artist_top_genre']

python

Now you need to pick how many clusters to target. You know there are 3 song genres that we carved

out of the dataset, so let's try 3:

You see an array printed out with predicted clusters (0, 1,or 2) for each row of the dataframe.

Use this array to calculate a 'silhouette score':

Silhouette score

Look for a silhouette score closer to 1. This score varies from -1 to 1, and if the score is 1, the cluster is

dense and well-separated from other clusters. A value near 0 represents overlapping clusters with

samples very close to the decision boundary of the neighboring clusters.source.

Our score is .53, so right in the middle. This indicates that our data is not particularly well-suited to

this type of clustering, but let's continue.

Build a model

X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])

y = le.transform(y)

from sklearn.cluster import KMeans

nclusters = 3
seed = 0

km = KMeans(n_clusters=nclusters, random_state=seed)
km.fit(X)

Predict the cluster for each data point

y_cluster_kmeans = km.predict(X)
y_cluster_kmeans

python

from sklearn import metrics
score = metrics.silhouette_score(X, y_cluster_kmeans)
score

python

https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam

Now you can import KMeans and start the clustering process. There are a few parts here that warrant

explaining:

🎓 range: These are the iterations of the clustering process

🎓 random_state: "Determines random number generation for centroid initialization."source

🎓 WCSS: "within-cluster sums of squares" measures the squared average distance of all the

points within a cluster to the cluster centroid.source.

🎓 Inertia: K-Means algorithms attempt to choose centroids to minimize 'inertia', "a measure

of how internally coherent clusters are."source. The value is appended to the wcss variable on

each iteration.

🎓 k-means++: In Scikit-learn you can use the 'k-means++' optimization, which "initializes

the centroids to be (generally) distant from each other, leading to probably better results than

random initialization.

Elbow method

Previously, you surmised that, because you have targeted 3 song genres, you should choose 3

clusters. But is that the case? Use the 'elbow method' to make sure.

from sklearn.cluster import KMeans
wcss = []

for i in range(1, 11):
 kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
 kmeans.fit(X)
 wcss.append(kmeans.inertia_)

python

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html#k-means

Use the wcss variable that you built in the previous step to create a chart showing where the

'bend' in the elbow is, which indicates the optimum number of clusters. Maybe it is 3!

Display the clusters

Try the process again, this time setting three clusters, and display the clusters as a scatterplot:

Check the model's accuracy:

plt.figure(figsize=(10,5))
sns.lineplot(range(1, 11), wcss,marker='o',color='red')
plt.title('Elbow')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()

python

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
labels = kmeans.predict(X)
plt.scatter(df['popularity'],df['danceability'],c = labels)
plt.xlabel('popularity')
plt.ylabel('danceability')
plt.show()

python

This model's accuracy is not very good, and the shape of the clusters gives you a hint why.

This data is too imbalanced, too little correlated and there is too much variance between the column

values to cluster well. In fact, the clusters that form are probably heavily influenced or skewed by the

three genre categories we defined above. That was a learning process!

In Scikit-learn's documentation, you can see that a model like this one, with clusters not very well

demarcated, has a 'variance' problem:

labels = kmeans.labels_

correct_labels = sum(y == labels)

print("Result: %d out of %d samples were correctly labeled." % (correct_lab

print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))

python

Infographic from Scikit-learn

Variance

Variance is defined as "the average of the squared differences from the Mean."source In the context

of this clustering problem, it refers to data that the numbers of our dataset tend to diverge a bit too

much from the mean.

✅ This is a great moment to think about all the ways you could correct this issue. Tweak the data a

bit more? Use different columns? Use a different algorithm? Hint: Try scaling your data to normalize it

https://www.mathsisfun.com/data/standard-deviation.html
https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/

and test other columns.

Try this 'variance calculator' to understand the concept a bit more.

🚀Challenge

Spend some time with this notebook, tweaking parameters. Can you improve the accuracy of the

model by cleaning the data more (removing outliers, for example)? You can use weights to give more

weight to given data samples. What else can you do to create better clusters?

Hint: Try to scale your data. There's commented code in the notebook that adds standard scaling to

make the data columns resemble each other more closely in terms of range. You'll find that while the

silhouette score goes down, the 'kink' in the elbow graph smooths out. This is because leaving the

data unscaled allows data with less variance to carry more weight. Read a bit more on this problem

here.

Post-lecture quiz

Review & Self Study

Take a look at Stanford's K-Means Simulator here. You can use this tool to visualize sample data

points and determine its centroids. With fresh data, click 'update' to see how long it takes to find

convergence. You can edit the data's randomness, numbers of clusters and numbers of centroids.

Does this help you get an idea of how the data can be grouped?

Also, take a look at this handout on k-means from Stanford.

Assignment

Try different clustering methods

https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php
https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/30/
https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html
https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

Introduction to natural language

processing
This lesson covers a brief history and important concepts of computational linguistics focusing on

natural language processing.

Pre-lecture quiz

Introduction

NLP, as it is commonly known, is one of the best-known areas where machine learning has been

applied and used in production software.

✅ Can you think of software that you use every day that probably has some NLP embedded? What

about your word processing programs or mobile apps that you use regularly?

You will learn about how the ideas about languages developed and what the major areas of study

have been. You will also learn definitions and concepts about how computers process text, including

parsing, grammar, and identifying nouns and verbs. There are some coding tasks in this lesson, and

several important concepts are introduced that you will learn to code later on in the next lessons.

Computational linguistics is an area of research and development over many decades that studies

how computers can work with, and even understand, translate, and communicate with languages.

natural language processing (NLP) is a related field focused on how computers can process 'natural',

or human, languages.

If you have ever dictated to your phone instead of typing or asked a virtual assistant a question, your

speech was converted into a text form and then processed or parsed from the language you spoke.

The detected keywords were then processed into a format that the phone or assistant could

understand and act on.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/31/

Real linguistic comprehension is hard! Image by Jen Looper

This is possible because someone wrote a computer program to do this. A few decades ago, some

science fiction writers predicted that people would mostly speak to their computers, and the

computers would always understand exactly what they meant. Sadly, it turned out to be a harder

problem that many imagined, and while it is a much better understood problem today, there are

significant challenges in achieving 'perfect' natural language processing when it comes to

understanding the meaning of a sentence. This is a particularly hard problem when it comes to

understanding humour or detecting emotions such as sarcasm in a sentence.

At this point, you may be remembering school classes where the teacher covered the parts of

grammar in a sentence. In some countries, students are taught grammar and linguistics as a

dedicated subject, but in many, these topics are included as part of learning a language: either your

first language in primary school (learning to read and write) and perhaps a second language in post-

primary, or high school. Don't worry if you are not an expert at differentiating nouns from verbs or

adverbs from adjectives!

https://twitter.com/jenlooper

If you struggle with the difference between the simple present and present progressive, you are not

alone. This is a challenging thing for many people, even native speakers of a language. The good

news is that computers are really good at applying formal rules, and you will learn to write code that

can parse a sentence as well as a human. The greater challenge you will examine later is

understanding the meaning, and sentiment, of a sentence.

Prerequisites

For this lesson, the main prerequisite is being able to read and understand the language of this

lesson. There are no math problems or equations to solve. While the original author wrote this lesson

in English, it is also translated into other languages, so you could be reading a translation. There are

examples where a number of different languages are used (to compare the different grammar rules of

different languages). These are not translated, but the explanatory text is, so the meaning should be

clear.

For the coding tasks, you will use Python and the examples are using Python 3.8.

In this section, you will need:

Python 3 programming language comprehension

this lesson uses input, loops, file reading, arrays

Visual Studio Code with its Python extension

(or the Python IDE of your choice)

TextBlob a simplified text processing library for Python

Follow the instructions on the TextBlob site to install it on your system (install the corpora as

well, as shown below)

💡 Tip: You can run Python directly in VS Code environments. Check the docs for more

information.

Conversing with Eliza

pip install -U textblob
python -m textblob.download_corpora

bash

https://github.com/sloria/TextBlob
https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-15963-cxa

The history of trying to make computers understand human language goes back decades, and one of

the earliest scientists to consider natural language processing was Alan Turing. When Turing was

researching artificial intelligence in the 1950's, he considered if a conversational test could be given

to a human and computer (via typed correspondence) where the human in the conversation was not

sure if they were conversing with another human or a computer. If, after a certain length of

conversation, the human could not determine that the answers were from a computer or not, then

could the computer be said to be thinking?

The idea for this came from a party game called The Imitation Game where an interrogator is alone in

a room and tasked with determining which of two people (in another room) are male and female

respectively. The interrogator can send notes, and must try to think of questions where the written

answers reveal the gender of the mystery person. Of course, the players in the other room are trying

to trick the interrogator by answering questions in such as way as to mislead or confuse the

interrogator, whilst also giving the appearance of answering honestly.

In the 1960's an MIT scientist called Joseph Weizenbaum developed Eliza, a computer 'therapist' that

would ask the human questions and give the appearance of understanding their answers. However,

while Eliza could parse a sentence and identify certain grammatical constructs and keywords so as to

give a reasonable answer, it could not be said to understand the sentence. If Eliza was presented with

a sentence following the format "I am sad" it might rearrange and substitute words in the sentence to

form the response "How long have you been sad".

This gave the impression that Eliza understood the statement and was asking a follow-on question,

whereas in reality, it was changing the tense and adding some words. If Eliza could not identify a

keyword that it had a response for, it would instead give a random response that could be applicable

to many different statements. Eliza could be easily tricked, for instance if a user wrote "You are a

bicycle" it might respond with "How long have I been a bicycle?", instead of a more reasoned

response.

https://wikipedia.org/wiki/ELIZA
https://youtu.be/RMK9AphfLco

🎥 Click the image above for a video about original ELIZA program

Note: You can read the original description of Eliza published in 1966 if you have an ACM

account. Alternately, read about Eliza on wikipedia

Exercise: Coding a basic conversational bot

A conversational bot, like Eliza, is a program that elicits user input and seems to understand and

respond intelligently. Unlike Eliza, our bot will not have several rules giving it the appearance of having

an intelligent conversation. Instead, out bot will have one ability only, to keep the conversation going

with random responses that might work in almost any trivial conversation.

Your steps when building a conversational bot:

1. Print instructions advising the user how to interact with the bot

2. Start a loop

1. Accept user input

2. If user has asked to exit, then exit

3. Process user input and determine response (in this case, the response is a random choice

from a list of possible generic responses)

4. Print response

3. loop back to step 2

Create this bot yourself in Python with the following random responses:

Here is some sample output to guide you (user input is on the lines starting with >):

random_responses = ["That is quite interesting, please tell me more.",
 "I see. Do go on.",
 "Why do you say that?",
 "Funny weather we've been having, isn't it?",
 "Let's change the subject.",
 "Did you catch the game last night?"]

python

Hello, I am Marvin, the simple robot.
You can end this conversation at any time by typing 'bye'
After typing each answer, press 'enter'

https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract
https://wikipedia.org/wiki/ELIZA

One possible solution to the task is here

✅ Stop and consider

1. Do you think the random responses would 'trick' someone into thinking that the bot actually

understood them?

2. What features would the bot need to be more effective?

3. If a bot could really 'understand' the meaning of a sentence, would it need to 'remember' the

meaning of previous sentences in a conversation too?

🚀Challenge

Choose one of the "stop and consider" elements above and either try to implement them in code or

write a solution on paper using pseudocode.

In the next lesson, you'll learn about a number of other approaches to parsing natural language and

machine learning.

Post-lecture quiz

Review & Self Study

How are you today?
> I am good thanks
That is quite interesting, please tell me more.
> today I went for a walk
Did you catch the game last night?
> I did, but my team lost
Funny weather we've been having, isn't it?
> yes but I hope next week is better
Let's change the subject.
> ok, lets talk about music
Why do you say that?
> because I like music!
Why do you say that?
> bye
It was nice talking to you, goodbye!

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/32/

Take a look at the references below as further reading opportunities.

References

1. Schubert, Lenhart, "Computational Linguistics", The Stanford Encyclopedia of Philosophy (Spring

2020 Edition), Edward N. Zalta (ed.), URL =

https://plato.stanford.edu/archives/spr2020/entries/computational-linguistics/.

2. Princeton University "About WordNet." WordNet. Princeton University. 2010.

Assignment

Search for a bot

Common natural language processing

tasks and techniques
For most natural language processing tasks, the text to be processed must be broken down,

examined, and the results stored or cross referenced with rules and data sets. This allows the

programmer to derive the meaning or intent or only the frequency of terms and words in a text.

Pre-lecture quiz

Let's discover common techniques used in processing text. Combined with machine learning, these

techniques help you to analyse large amounts of text efficiently. Before applying ML to these tasks,

however, let's understand the problems encountered by an NLP specialist.

Tasks common to NLP

🎓 Tokenization

Probably the first thing most NLP algorithms have to do is split the text into tokens, or words. While

this sounds simple, having to account for punctuation and different languages' word and sentence

https://plato.stanford.edu/archives/spr2020/entries/computational-linguistics/
https://wordnet.princeton.edu/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/33/

delimiters can make it tricky. You might have to use various methods to determine demarcations.

Tokenizing a sentence from Pride and Prejudice. Infographic by Jen Looper

🎓 Embeddings

Word embeddings are a way to convert your text data numerically. This is done in a way so that words

with a similar meaning or words used together cluster together.

"I have the highest respect for your nerves, they are my old friends." - Word embeddings for a

sentence in Pride and Prejudice. Infographic by Jen Looper

https://twitter.com/jenlooper
https://wikipedia.org/wiki/Word_embedding
https://twitter.com/jenlooper

✅ Try this interesting tool to experiment with word embeddings. Clicking on one word shows

clusters of similar words: 'toy' clusters with 'disney', 'lego', 'playstation', and 'console'.

🎓 Parsing & Part-of-speech Tagging

Every word that has been tokenized can be tagged as a part of speech - a noun, verb, or adjective

etc. The sentence the quick red fox jumped over the lazy brown dog might be POS

tagged as fox = noun, jumped = verb etc.

Parsing a sentence from Pride and Prejudice. Infographic by Jen Looper

Parsing is recognizing what words are related to each other in a sentence - for instance

the quick red fox jumped is an adjective-noun-verb sequence that is separate from the

lazy brown dog sequence.

🎓 Word and Phrase Frequencies

A useful tool when analyzing a large body of text is to build a dictionary of every word or phrase of

interest and how often it appears. The phrase

the quick red fox jumped over the lazy brown dog has a word frequency of 2 for

the .

Example:

The Rudyard Kipling poem The Winners has a verse:

What the moral? Who rides may read.
When the night is thick and the tracks are blind
A friend at a pinch is a friend, indeed,
But a fool to wait for the laggard behind.
Down to Gehenna or up to the Throne,
He travels the fastest who travels alone.

https://projector.tensorflow.org/
https://twitter.com/jenlooper

As phrase frequencies can be case insensitive or case sensitive as required, the phrase a friend

has a frequency of 2 and the has a frequency of 6, and travels is 2.

🎓 N-grams

A text can be split into sequences of words of a set length, a single word (unigram), two words

(bigrams), three words (trigrams) or any number of words (n-grams).

Example

For instance the quick red fox jumped over the lazy brown dog with a n-gram score

of 2 produces the following n-grams:

1. the quick

2. quick red

3. red fox

4. fox jumped

5. jumped over

6. over the

7. the lazy

8. lazy brown

9. brown dog

It might be easier to visualise it as a sliding box over the sentence. Here it is for n-grams of 3 words,

the n-gram is in bold in each sentence:

1. the quick red fox jumped over the lazy brown dog

2. the quick red fox jumped over the lazy brown dog

3. the quick red fox jumped over the lazy brown dog

4. the quick red fox jumped over the lazy brown dog

5. the quick red fox jumped over the lazy brown dog

6. the quick red fox jumped over the lazy brown dog

7. the quick red fox jumped over the lazy brown dog

8. the quick red fox jumped over the lazy brown dog

N-gram value of 3: Infographic by Jen Looper

🎓 Noun phrase Extraction

In most sentences, there is a noun that is the subject, or object of the sentence. In English, it is often

identifiable as having 'a' or 'an' or 'the' preceding it. Identifying the subject or object of a sentence by

'extracting the noun phrase' is a common task in NLP when attempting to understand the meaning of

a sentence.

✅ In the sentence "I cannot fix on the hour, or the spot, or the look or the words, which laid the

foundation. It is too long ago. I was in the middle before I knew that I had begun.", can you identify the

noun phrases?

Example

In the sentence the quick red fox jumped over the lazy brown dog there are 2 noun

phrases: quick red fox and lazy brown dog.

🎓 Sentiment analysis

A sentence or text can be analysed for sentiment, or how positive or negative it is. Sentiment is

measured in polarity and objectivity/subjectivity. Polarity is measured from -1.0 to 1.0 (negative to

positive) and 0.0 to 1.0 (most objective to most subjective).

✅ Later you'll learn that there are different ways to determine sentiment using machine learning, but

one way is to have a list of words and phrases that are categorized as positive or negative by a human

expert and apply that model to text to calculate a polarity score. Can you see how this would work in

some circumstances and less well in others?

https://twitter.com/jenlooper

🎓 Inflection

Inflection enables you to take a word and get the singular or plural of the word.

🎓 Lemmatization

A lemma is the root or headword for a set of words, for instance flew, flies, flying have a lemma of the

verb fly.

There are also useful databases available for the NLP researcher, notably:

🎓 WordNet

WordNet is a database of words, synonyms, antonyms and many other details for every word in many

different languages. It is incredibly useful when attempting to build translations, spell checkers, or

language tools of any type.

NLP Libraries

Luckily, you don't have to build all of these techniques yourself, as there are excellent Python libraries

available that make it much more accessible to developers who aren't specialized in natural language

processing or machine learning. The next lessons include more examples of these, but here you will

learn some useful examples to help you with the next task.

Let's use a library called TextBlob as it contains helpful APIs for tackling these types of tasks.

TextBlob "stands on the giant shoulders of NLTK and pattern, and plays nicely with both." It has a

considerable amount of ML embedded in its API.

Note: A useful Quick Start guide is available for TextBlob that is recommended for

experienced Python developers

When attempting to identify noun phrases, TextBlob offers several options of extractors to find noun

phrases. Take a look at ConllExtractor .

from textblob import TextBlob
from textblob.np_extractors import ConllExtractor
import and create a Conll extractor to use later
extractor = ConllExtractor()

later when you need a noun phrase extractor:

python

https://wordnet.princeton.edu/
https://nltk.org/
https://github.com/clips/pattern
https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart

What's going on here? ConllExtractor is "A noun phrase extractor that uses chunk parsing

trained with the ConLL-2000 training corpus." ConLL-2000 refers to the 2000 Conference on

Computational Natural Language Learning. Each year the conference hosted a workshop to

tackle a thorny NLP problem, and in 2000 it was noun chunking. A model was trained on the

Wall Street Journal, with "sections 15-18 as training data (211727 tokens) and section 20 as

test data (47377 tokens)". You can look at the procedures used here and the results.

Task: Improving your bot with a little NLP

In the previous lesson you built a very simple Q&A bot. Now, you'll make Marvin a bit more

sympathetic by analyzing your input for sentiment and printing out a response to match the

sentiment. You'll also need to identify a noun_phrase and ask about it.

Your steps when building a better conversational bot:

1. Print instructions advising the user how to interact with the bot

2. Start loop

1. Accept user input

2. If user has asked to exit, then exit

3. Process user input and determine appropriate sentiment response

4. If a noun phrase is detected in the sentiment, pluralize it and ask for more input on that topic

5. Print response

3. loop back to step 2

Here is the code snippet to determine sentiment using TextBlob. Note there are only four gradients of

sentiment response (you could have more if you like):

user_input = input("> ")
user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-
np = user_input_blob.noun_phrases

if user_input_blob.polarity <= -0.5:
 response = "Oh dear, that sounds bad. "
elif user_input_blob.polarity <= 0:
 response = "Hmm, that's not great. "
elif user_input_blob.polarity <= 0.5:
 response = "Well, that sounds positive. "

python

https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor
https://www.clips.uantwerpen.be/conll2000/chunking/
https://ifarm.nl/erikt/research/np-chunking.html

Here is some sample output to guide you (user input is on the lines with starting with >):

One possible solution to the task is here

✅ Knowledge Check

1. Do you think the sympathetic responses would 'trick' someone into thinking that the bot actually

understood them?

2. Does identifying the noun phrase make the bot more 'believable'?

3. Why would extracting a 'noun phrase' from a sentence a useful thing to do?

🚀Challenge

Take a task in the prior knowledge check and try to implement it. Test the bot on a friend. Can it trick

them? Can you make your bot more 'believable?'

Post-lecture quiz

elif user_input_blob.polarity <= 1:
 response = "Wow, that sounds great. "

Hello, I am Marvin, the friendly robot.
You can end this conversation at any time by typing 'bye'
After typing each answer, press 'enter'
How are you today?
> I am ok
Well, that sounds positive. Can you tell me more?
> I went for a walk and saw a lovely cat
Well, that sounds positive. Can you tell me more about lovely cats?
> cats are the best. But I also have a cool dog
Wow, that sounds great. Can you tell me more about cool dogs?
> I have an old hounddog but he is sick
Hmm, that's not great. Can you tell me more about old hounddogs?
> bye
It was nice talking to you, goodbye!

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/34/

Review & Self Study

In the next few lessons you will learn more about sentiment analysis. Research this interesting

technique in articles such as these on KDNuggets

Assignment

Make a bot talk back

Translation and sentiment analysis with

ML
In the previous lessons you learned how to build a basic bot using TextBlob, a library that embeds ML

behind-the-scenes to perform basic NLP tasks such as noun phrase extraction. Another important

challenge in computational linguistics is accurate translation of a sentence from one spoken or

written language to another.

Pre-lecture quiz

This is a very hard problem compounded by the fact that there are thousands of languages and each

can have very different grammar rules. One approach is to convert the formal grammar rules for one

language, such as English, into a non-language dependent structure, and then translate it by

converting back to another language. This means that you would take the following steps:

1. Identify or tag the words in input language into nouns, verbs etc.

2. Produce a direct translation of each word in the target language format

☘ Example: In English, the simple sentence I feel happy is 3 words in the order

subject (I), verb (feel), adjective (happy). However, in the Irish language, the same sentence

has a very different grammatical structure - emotions like "happy" or "sad" are expressed as

being upon you. The English phrase I feel happy in Irish would be Tá athas orm . A

literal translation would be Happy is upon me . Of course, an Irish speaker translating to

English would say I feel happy , not Happy is upon me , because they understand

https://www.kdnuggets.com/tag/nlp
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/35/

the meaning of the sentence, even if the words and sentence structure are different. The

formal order for the sentence in Irish are verb (Tá or is), adjective (athas, or happy), subject

(orm, or upon me).

Translation

A naive translation program might translate words only, ignoring the sentence structure.

✅ If you've learned a second (or third or more) language as an adult, you might have started by

thinking in your native language, translating a concept word by word in your head to the second

language, and then speaking out your translation. This is similar to what naive translation computer

programs are doing. It's important to get past this phase to attain fluency!

Naive translation leads to bad (and sometimes hilarious) mistranslations: I feel happy

translates literally to Mise bhraitheann athas in Irish. That means (literally) me feel happy

and is not a valid Irish sentence. Even though English and Irish are languages spoken on two closely

neighboring islands, they are very different languages with different grammar structures.

You can watch some videos about Irish linguistic traditions such as this one

Machine learning approaches

So far, you've learned about the formal rules approach to natural language processing. Another

approach is to ignore the meaning of the words, and instead use machine learning to detect patterns.

This can work in translation if you have lots of text (a corpus) or texts (corpora) in both the origin and

target languages. For instance, consider the case of Pride and Prejudice, a well-known English novel

written by Jane Austen in 1813. If you consult the book in English and a human translation of the book

in French, you could detect phrases in one that are idiomatically translated into the other. You'll do

that in a minute.

For instance, when an English phrase such as I have no money is translated literally to French, it

might become Je n'ai pas de monnaie . "Monnaie" is a tricky french 'false cognate', as

'money' and 'monnaie' are not synonymous. A better translation that a human might make would be

Je n'ai pas d'argent , because it better conveys the meaning that you have no money (rather

than 'loose change' which is the meaning of 'monnaie'). If a ML model has enough human

translations to build a model on, it can improve the accuracy of translations by identifying common

patterns in texts that have been previously translated by expert human speakers of both languages.

https://www.youtube.com/watch?v=mRIaLSdRMMs

Task: Translation

You can use TextBlob to translate sentences. Try the famous first line of Pride and Prejudice:

TextBlob does a pretty good job at the translation: "C'est une vérité universellement reconnue, qu'un

homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!".

I would argue that TextBlob's translation is far more exact, in fact, than the 1932 French translation of

the book by V. Leconte and Ch. Pressoir:

"C'est une vérité universelle qu'un celibataire pourvu d'une belle fortune doit avoir envie de se marier,

et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle residence,

cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la

propriété légitime de l'une ou l'autre de leurs filles."

In this case, the translation informed by ML does a better job than the human translator who is

unnecessarily putting words in the original author's mouth for 'clarity'.

What's going on here? and why is TextBlob so good at translation? Well, behind the scenes,

it's using Google translate, a sophisticated AI able to parse millions of phrases to predict the

best strings for the task at hand. There's nothing manual going on here and you need an

internet connection to use blob.translate .

✅ Try some more sentences. Which is better, ML or human translation? In which cases?

Sentiment analysis

Another area where machine learning can work very well is sentiment analysis. A non-ML approach to

sentiment is to identify words and phrases which are 'positive' and 'negative'. Then, given a new

piece of text, calculate the total value of the positive, negative and neutral words to identify the

overall sentiment.

from textblob import TextBlob

blob = TextBlob(
 "It is a truth universally acknowledged, that a single man in possessio
)
print(blob.translate(to="fr"))

python

This approach is easily tricked as you may have seen in the Marvin task - the sentence

Great, that was a wonderful waste of time, I'm glad we are lost on this dark road

is a sarcastic, negative sentiment sentence, but the simple algorithm detects 'great', 'wonderful',

'glad' as positive and 'waste', 'lost' and 'dark' as negative. The overall sentiment is swayed by these

conflicting words.

✅ Stop a second and think about how we convey sarcasm as human speakers. Tone inflection plays

a large role. Try to say the phrase "Well, that film was awesome" in different ways to discover how

your voice conveys meaning.

Machine learning approaches

The ML approach would be to hand gather negative and positive bodies of text - tweets, or movie

reviews, or anything where the human has given a score and a written opinion. Then NLP techniques

can be applied to opinions and scores, so that patterns emerge (e.g., positive movie reviews tend to

have the phrase 'Oscar worthy' more than negative movie reviews, or positive restaurant reviews say

'gourmet' much more than 'disgusting').

⚖ Example: If you worked in a politician's office and there was some new law being debated,

constituents might write to the office with emails supporting or emails against the particular

new law. Let's say you are tasked with reading the emails and sorting them in 2 piles, for and

against. If there were a lot of emails, you might be overwhelmed attempting to read them all.

Wouldn't it be nice if a bot could read them all for you, understand them and tell you in which

pile each email belonged?

One way to achieve that is to use Machine Learning. You would train the model with a portion

of the against emails and a portion of the for emails. The model would tend to associate

phrases and words with the against side and the for side, but it would not understand any of

the content, only that certain words and patterns were more likely to appear in an against or a

for email. You could test it with some emails that you had not used to train the model, and see

if it came to the same conclusion as you did. Then, once you were happy with the accuracy of

the model, you could process future emails without having to read each one.

✅ Does this process sound like processes you have used in previous lessons?

Exercise: sentimental sentences

Sentiment is measured in with a polarity of -1 to 1, meaning -1 is the most negative sentiment, and 1 is

the most positive. Sentiment is also measured with an 0 - 1 score for objectivity (0) and subjectivity

(1).

Take another look at Jane Austen's Pride and Prejudice. The text is available here at Project

Gutenberg. The sample below shows a short program which analyses the sentiment of first and last

sentences from the book and display its sentiment polarity and subjectivity/objectivity score. You

should us the TextBlob library (described above) to determine sentiment (you do not have to write

your own sentiment calculator) in the following task.

Your task is to determine, using sentiment polarity, if Pride and Prejudice has more absolutely positive

sentences than absolutely negative ones. For this task, you may assume that a polarity score of 1 or

-1 is absolutely positive or negative respectively.

Steps:

1. Download a copy of Pride and Prejudice from Project Gutenberg as a .txt file. Remove the

metadata at the start and end of the file, leaving only the original text

2. Open the file in Python and extract the contents as a string

3. Create a TextBlob using the book string

4. Analyse each sentence in the book in a loop

1. If the polarity is 1 or -1 store the sentence in an array or list of positive or negative messages

5. At the end, print out all the positive sentences and negative sentences (separately) and the

number of each.

Here is a sample solution.

from textblob import TextBlob

quote1 = """It is a truth universally acknowledged, that a single man in po

quote2 = """Darcy, as well as Elizabeth, really loved them; and they were b

sentiment1 = TextBlob(quote1).sentiment
sentiment2 = TextBlob(quote2).sentiment

print(quote1 + " has a sentiment of " + str(sentiment1))
print(quote2 + " has a sentiment of " + str(sentiment2))
outputs:
It is a truth universally acknowledged, that a single man in possession o
Darcy, as well as Elizabeth, really loved them; and they were
both ever sensible of the warmest gratitude towards the persons
who, by bringing her into Derbyshire, had been the means of
uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivit

python

https://www.gutenberg.org/files/1342/1342-h/1342-h.htm
https://www.gutenberg.org/files/1342/1342-h/1342-h.htm

✅ Knowledge Check

1. The sentiment is based on words used in the sentence, but does the code understand the words?

2. Do you think the sentiment polarity is accurate, or in other words, do you agree with the scores?

1. In particular, do you agree or disagree with the absolute positive polarity of the following

sentences?

“What an excellent father you have, girls!” said she, when the door was shut.

“Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the

result?” “I am perfectly convinced by it that Mr. Darcy has no defect.

How wonderfully these sort of things occur!

I have the greatest dislike in the world to that sort of thing.

Charlotte is an excellent manager, I dare say.

“This is delightful indeed!

I am so happy!

Your idea of the ponies is delightful.

2. The next 3 sentences were scored with an absolute positive sentiment, but on close reading,

they are not positive sentences. Why did the sentiment analysis think they were positive

sentences?

Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to

comfort you,” replied Elizabeth; “but it is wholly out of my power.

If I could but see you as happy!

Our distress, my dear Lizzy, is very great.

3. Do you agree or disagree with the absolute negative polarity of the following sentences?

Everybody is disgusted with his pride.

“I should like to know how he behaves among strangers.” “You shall hear then—but prepare

yourself for something very dreadful.

The pause was to Elizabeth s̓ feelings dreadful.

It would be dreadful!

✅ Any aficionado of Jane Austen will understand that she often uses her books to critique the more

ridiculous aspects of English Regency society. Elizabeth Bennett, the main character in Pride and

Prejudice, is a keen social observer (like the author) and her language is often heavily nuanced. Even

Mr. Darcy (the love interest in the story) notes Elizabeth's playful and teasing use of language: "I have

had the pleasure of your acquaintance long enough to know that you find great enjoyment in

occasionally professing opinions which in fact are not your own."

🚀Challenge

Can you make Marvin even better by extracting other features from the user input?

Post-lecture quiz

Review & Self Study

There are many ways to extract sentiment from text. Think of the business applications that might

make use of this technique. Think about how it can go awry. Read more about sophisticated

enterprise-ready systems that analyze sentiment such as Azure Text Analysis. Test some of the Pride

and Prejudice sentences above and see if it can detect nuance.

Assignment

Poetic license

Sentiment Analysis: Hotel Reviews
In this section you will use the techniques in the previous lessons to do some exploratory data

analysis of a large dataset. Once you have a good understanding of the usefulness of the various

columns, you will learn how to remove the unneeded columns, calculate some new data based on the

existing columns, and save the resulting dataset for use in the final challenge.

Pre-lecture quiz

Introduction

So far you've learned about how text data is quite unlike numerical types of data. If it's text that was

written or spoken by a human, if can be analysed to find patterns and frequencies, sentiment and

meaning. This final lesson takes you into a real data set with a real challenge. This lesson is a lot of

code and analysis of a data set, it is quite dense but very amenable to experimentation in your

favourite IDE or Notebook.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/36/
https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-15963-cxa
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/37/

This lesson uses the data set 515K Hotel Reviews Data in Europe, CC0: Public Domain

license, scraped from Booking.com from public sources. The creator of the dataset was

Jiashen Liu.

Preparation

You will need:

Python 3

pandas

TODO install NTLK details

The data set is available on Kaggle 515K Hotel Reviews Data in Europe, it is around 230 MB

unzipped.

Exploratory Data Analysis

This challenge assumes you are building a hotel recommendation bot using sentiment analysis and

guest reviews scores. The dataset you will be starting from has over 515,000 rows reviewing 1493

different hotels in 6 cities.

Using Python, a dataset of hotel reviews, and NLTK's sentiment analysis you could find out:

what are the most frequently used words and phrases in reviews?

do the official tags describing a hotel correlate with review scores (e.g. are the more negative

reviews for a particular hotel for Family with young children than by Solo traveller, perhaps

indicating it is better for Solo travellers?)

do the NLTK sentiment scores 'agree' with the hotel reviewer's numerical score?

Dataset

Let's explore the dataset first. Remember to download and save the CSV file here:

https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe.

The dataset was created by Jiashen Liu 4 years ago (as of writing) and is licensed CC0: Public

Domain.

https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe
https://creativecommons.org/publicdomain/zero/1.0/

"This dataset contains 515,000 customer reviews and scoring of 1493 luxury hotels across

Europe. Meanwhile, the geographical location of hotels are also provided for further analysis."

You could open the file in an editor like VS Code or even Excel, and as it's a text CSV file, any editor

that can handle large text files should be able to open it.

The headers in the dataset are as follows:

Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name,

Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts,

Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts,

Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng

and Jiashen provides the description of each item on Kaggle.

Here they are grouped in a way that might be easier to examine:

Hotel columns

Hotel_Name , Hotel_Address , lat (latitude), lng (longitude)

Using lat and lng you could plot a map with Python showing the hotel locations (perhaps

colour coded for negative and positive reviews)

Hotel_Address is not obviously useful to us, and we'll probably replace that with a country for

easier sorting & searching

Hotel Meta-review columns

Average_Score

According to the dataset creator, this column is Average Score of the hotel, calculated based

on the latest comment in the last year. This seems like an unusual way to calculate the score,

but it is the data scraped so we may take it as face value for now. Based on the other columns

in this data, can you think of another way to calculate the average score?

Total_Number_of_Reviews

The total number of reviews this hotel has received - it is not clear (without writing some code)

if this refers to the reviews in the dataset. More on this discrepancy below in the Average hotel

score section.

Additional_Number_of_Scoring

This means a review score was given but no positive or negative review was written by the

reviewer

Review columns

Reviewer_Score

This is a numerical value with at most 1 decimal place between the min and max values 2.5 and

10

It is not explained why 2.5 is the lowest score possible

Negative_Review

If a reviewer wrote nothing, this field will have "No Negative"

Note that a reviewer may write a positive review in the Negative review column (e.g. "there is

nothing bad about this hotel")

Review_Total_Negative_Word_Counts

Are higher negative word counts indicative of a lower score (without checking the

sentimentality)

Positive_Review

If a reviewer wrote nothing, this field will have "No Positive"

Note that a reviewer may write a negative review in the Positive review column (e.g. "there is

nothing good about this hotel at all")

Review_Total_Positive_Word_Counts

Are higher positive word counts indicative of a higher score (without checking the

sentimentality)

Review_Date and days_since_review

A freshness or staleness measure might be applied to a review (older reviews might not be as

accurate as newer ones because hotel management changed, or renovations have been done,

or a pool was added etc.)

Tags

These are short descriptors that a reviewer may select to describe the type of guest they were

(e.g. solo or family), the type of room they had, the length of stay and how the review was

submitted.

Unfortunately, using these tags is problematic, check the section below which discusses their

usefulness

Reviewer columns

Total_Number_of_Reviews_Reviewer_Has_Given

This might be an factor in a recommendation model, for instance, if you could determine that

more prolific reviewers with hundreds of reviews were more likely to be negative rather than

positive. However, the reviewer of any particular review is not identified with a unique code,

and therefore cannot be linked to a set of reviews. There are 30 reviewers with 100 or more

reviews, but hard to see how this can aid the recommendation model.

Reviewer_Nationality

Some people might think that certain nationalities are more likely to give a positive or negative

review because of a national inclination. Be careful building such anecdotal views into your

models. These are national (and sometimes racial) stereotypes, and each reviewer was an

individual who wrote a review based on their experience. It may have been filtered through

many lens, such as their previous hotel stays, the distance travelled, and their personal

temperament - but thinking that their nationality was the reason for a review score is a hard to

justify assumption.

Examples

Average

Score

Total

Number

Reviews

Reviewer

Score

Negative

Review

Positive

Review
Tags

7.8 1945 2.5

This is currently not a hotel but a

construction site I was terroized from early

morning and all day with unacceptable

building noise while resting after a long trip

and working in the room People were

working all day i e with jackhammers in the

adjacent rooms I asked for a room change

but no silent room was available To make

thinks worse I was overcharged I checked

out in the evening since I had to leave very

early flight and received an appropiate bill

A day later the hotel made another charge

without my concent in excess of booked

price It s a terrible place Don t punish

yourself by booking here

Nothing

Terrible

place

Stay

away

Business

trip

Couple

Standard

Double

Room

Stayed 2

nights

As you can see from this guest, they did not have a happy stay at this hotel. The hotel has a good

average score of 7.8 and 1945 reviews, but this reviewer gave it 2.5 and wrote 115 words about how

negative their stay was. If they wrote nothing at all in the Positive_Review column, you might surmise

there was nothing positive, but alas they wrote 7 words of warning. If we just counted words instead

of the meaning, or sentiment of the words, we might have a skewed view of the reviewers intent.

Strangely, their score of 2.5 is confusing, because if that hotel stay was so bad, why give it any points

at all? Investigating the dataset closely, you'll see that the lowest possible score is 2.5, not 0. The

highest possible score is 10.

Tags

As mentioned above, at first glance, the idea to use Tags to categorise the data makes sense.

Unfortunately these tags are not standardised, which means in one hotel, the options might be Single

room, Twin room, and Double room, but in the next hotel, they are Deluxe Single Room, Classic

Queen Room, and Executive King Room. These might be the same things, but there are so many

variations, the choice becomes:

1. Attempt to change all terms to a single standard, which is very difficult, because it is not clear

what the conversion path would be in each case (e.g. Classic single room maps to Single room but

Superior Queen Room with Courtyard Garden or City View is much harder to map)

2. We can take an NLP approach and measure the frequency of certain terms like Solo, Business

Traveller, or Family with young kids as they apply to each hotel, and factor that into the

recommendation

Tags are usually (but not always) a single field containing a list of 5 to 6 comma separated values

aligning to Type of trip, Type of guests, Type of room, Number of nights, and Type of device review

was submitted on. However, because some reviewers don't fill in each field (they might leave one

blank), the values are not always in the same order.

As an example, take Type of group. There are 1025 unique possibilities in this field in the Tags

column, and unfortunately only some of them refer to a group (some are the type of room etc.). If you

filter only the ones that mention family, the results contain many Family room type results. If you

include the term with, i.e. count the Family with values, the results are better, with over 80,000 of the

515,000 results containing the phrase "Family with young children" or "Family with older children".

This means the tags column is not completely useless to us, but will take some work to make it

useful.

Average Hotel Score

There are a number of oddities or discrepancies with the data set that I can't figure out, but are

illustrated here so you are aware of them when building your models. If you figure it out, please let us

know!

The dataset has the following columns relating to the average score and number of reviews:

1. Hotel_Name

2. Additional_Number_of_Scoring

3. Average_Score

4. Total_Number_of_Reviews

5. Reviewer_Score

If we take a single hotel and count the reviews, we see that the single hotel with the most reviews in

this dataset is Britannia International Hotel Canary Wharf with 4789 reviews out of 515,000. But if we

look at the Total_Number_of_Reviews value for this hotel, it is 9086. You might surmise that

there are many more scores without reviews, so perhaps we should add in the

Additional_Number_of_Scoring column value. That value is 2682, and adding it to 4789 gets

us 7,471 which is still 1615 short of the Total_Number_of_Reviews .

If you take the Average_Score columns, you might surmise it is the average of the reviews in the

dataset, but the description from Kaggle is "Average Score of the hotel, calculated based on the

latest comment in the last year". That doesn't seem that useful, but we can calculate our own average

based on the reviews scores in the data set. Using the same hotel as an example, the average hotel

score is given as 7.1 but the calculated score (average reviewer score in the dataset) is 6.8. This is

close, but not the same value, and we can only guess that the scores given in the

Additional_Number_of_Scoring reviews increased the average to 7.1. Unfortunately with no

way to test or prove that assertion, it is difficult to use or trust Average_Score ,

Additional_Number_of_Scoring and Total_Number_of_Reviews when they are based

on, or refer to, data we do not have.

To complicate things further, the hotel with the second highest number of reviews has a calculated

average score of 8.12 and the dataset Average_Score is 8.1. Is this correct score a coincidence or

is the first hotel a discrepancy?

On the possibility that these hotel might be an outlier, and that maybe most of the values tally up (but

some do not for some reason) we will write a short programs next to explore the values in the dataset

and determine the correct usage (or non-usage) of the values.

A note of caution when working with datasets with human written reviews

Most of the time working with this dataset, you will write code that calculates something from the

text, without having to read or analyse the text yourself. This is the essence of NLP, interpreting

meaning or sentiment without having to have a human do it. However, it is possible you will read some

of the negative reviews. I would urge you not to, because you don't have to. However they were

written by humans, hotel guests who decided to write a review. Some of them are silly, or irrelevant

negative hotel reviews, such as "The weather wasn't great", something beyond the control of the

hotel, or indeed, anyone. But there is a dark side to some reviews too. Sometimes the negative

reviews are racist, sexist, or ageist. This is unfortunate but to be expected in a dataset scraped off a

public website. Some reviewers leave reviews that you would find distasteful, uncomfortable, or

upsetting. Better to let the code measure the sentiment, than read them yourself and be upset. That

said, it is a minority that write such things, but they exist all the same.

Loading the CSV data into a pandas DataFrame

That's enough examining the data visually, now you'll write some code and get some answers! This

section is focused on the pandas library. Your very first task is to ensure you can load and read the

CSV data. The pandas library has a fast CSV loader, and the result is placed in a DataFrame. If you've

never used a DataFrame before, imagine it's a 2D structure with rows and columns. The CSV we are

loading has over half a million rows, but only 17 columns. pandas gives you lots of powerful ways to

interact with a DataFrame, including the ability to perform operations on every row.

Learning pandas is hard but very worth while, it is a great library to be a master of. For this lesson,

you need to understand the following items like DataFrames, Series, value_count(), apply(),

groupBy(), and transform().

There are some great guides and docs at the pandas documentation and it's worth following the

Getting started and User guide.

From here on in this lesson, there will be code snippets and some explanations of the code and some

discussion about what the results mean. Try to do each section in turn, and you may find the Juypter

notebook useful as it contains all the sections. TODO: clean and upload notebook too

Let's start with loading the data file you be using:

Now that the data is loaded, we can perform some operations on it. Keep this code at the top of your

program for the next part.

Exploring the data

In this case, the data is already clean, that means that it is ready to work with, and does not have

characters in other languages that might trip up the algorithms expecting only English characters.

You might have to work with data that required some initial processing to format it before applying

NLP techniques, but not this time.

However, you should take a moment to ensure you that once loaded, you can explore the data with

code. It's very easy to want to focus on the Negative_Review and Positive_Review

columns. They are filled with natural text for your NLP algorithms to process. But wait! Before you

jump into the NLP and sentiment, you should follow the code below, to get used to working with

DataFrames and also to ascertain if the values given in the dataset match the values you calculate

with pandas.

Load the hotel reviews from CSV
import pandas as pd
import time
importing time so the start and end time can be used to calculate file lo
print("Loading data file now, this could take a while depending on file siz
start = time.time()
df is 'DataFrame'
df = pd.read_csv('Hotel_Reviews.csv')
end = time.time()
print("Loading took " + str(round(end - start, 2)) + " seconds")

python

https://pandas.pydata.org/pandas-docs/stable/

DataFrame operations

The first task in this lesson is to check if the following assertions are correct by writing some code

that examines the data frame (without changing it). The first is below as an example and the others

are similar, but this is a great way to learn how to work with a DataFrame (if this is your first time

encountering them, you should definitely try to complete them before the next section).

Like many programming tasks, there are several ways to complete this, but good advice is to

do it in the simplest, easiest way you can, especially if it will be easier to understand when you

come back this code in the future. With DataFrames, there is a comprehensive API that will

often have a way to do what you want efficiently.

If you prefer, you can treat these as coding tasks and attempt to answer them without looking at the

solution. If you are new to DataFrames, try following and executing the code of each step, paying

attention to methods you do not recognise.

With each of these questions, you can build on the previous answer by adding each solution beneath

the previous answer (you don't have to create a new Python file for each answer). Remember to

include the code in the Loading the CSV file above, that code is required before your code.

Here are the questions on their own, followed by the code and explanations:

1. Print out the shape of the data frame you have just loaded (the shape is the number of rows and

columns)

2. Calculate the frequency count for reviewer nationalities:

1. How many distinct values are there for the column Reviewer_Nationality and what are

they?

2. What reviewer nationality is the most common in the dataset (print country and number of

reviews)?

3. What are the next top 10 most frequently found nationalities, and their frequency count?

3. What was the most frequently reviewed hotel for each of the top 10 most reviewer nationalities?

4. How many reviews are there per hotel (frequency count of hotel) in the dataset?

5. While there is an Average_Score column for each hotel in the dataset, you can also calculate

an average score (getting the average of all reviewer scores in the dataset for each hotel). Add a

new column to your dataframe with the column header Calc_Average_Score that contains

that calculated average.

6. Do any hotels have the same (rounded to 1 decimal place) Average_Score and

Calc_Average_Score ?

1. Try writing a Python function that takes a Series (row) as an argument and compares the

values, printing out a message when the values are not equal. Then use the .apply()

method to process every row with the function.

7. Calculate and print out how many rows have column Negative_Review values of "No

Negative"

8. Calculate and print out how many rows have column Positive_Review values of "No

Positive"

9. Calculate and print out how many rows have column Positive_Review values of "No

Positive" and Negative_Review values of "No Negative"

Code

1. Print out the shape of the data frame you have just loaded (the shape is the number of rows and

columns)

2. Calculate the frequency count for reviewer nationalities:

1. How many distinct values are there for the column Reviewer_Nationality and what are

they?

2. What reviewer nationality is the most common in the dataset (print country and number of

reviews)?

print("The shape of the data (rows, cols) is " + str(df.shape))
> The shape of the data (rows, cols) is (515738, 17)

python

value_counts() creates a Series object that has index and values in th
nationality_freq = df["Reviewer_Nationality"].value_counts()
print("There are " + str(nationality_freq.size) + " different nationalit
print first and last rows of the Series. Change to nationality_freq.to
print(nationality_freq)

There are 227 different nationalities
 United Kingdom 245246
 United States of America 35437
 Australia 21686
 Ireland 14827
 United Arab Emirates 10235
 ...
 Comoros 1
 Palau 1
 Northern Mariana Islands 1
 Cape Verde 1

python

3. What are the next top 10 most frequently found nationalities, and their frequency count?

3. What was the most frequently reviewed hotel for each of the top 10 most reviewer nationalities?

 Guinea 1
Name: Reviewer_Nationality, Length: 227, dtype: int64

print("The highest frequency reviewer nationality is " + str(national
Notice there is a leading space on the values, strip() removes that
What is the top 10 most common nationalities and their frequencies?
print("The next 10 highest frequency reviewer nationalities are:")
print(nationality_freq[1:11].to_string())

The highest frequency reviewer nationality is United Kingdom with 245
The next 10 highest frequency reviewer nationalities are:
 United States of America 35437
 Australia 21686
 Ireland 14827
 United Arab Emirates 10235
 Saudi Arabia 8951
 Netherlands 8772
 Switzerland 8678
 Germany 7941
 Canada 7894
 France 7296

python

What was the most frequently reviewed hotel for the top 10 nationaliti
Normally with pandas you will avoid an explicit loop, but wanted to sh
for nat in nationality_freq[:10].index:
 # First, extract all the rows that match the criteria into a new data
 nat_df = df[df["Reviewer_Nationality"] == nat]
 # Now get the hotel freq
 freq = nat_df["Hotel_Name"].value_counts()
 print("The most reviewed hotel for " + str(nat).strip() + " was " + s

The most reviewed hotel for United Kingdom was Britannia International H
The most reviewed hotel for United States of America was Hotel Esther a
The most reviewed hotel for Australia was Park Plaza Westminster Bridge
The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kens
The most reviewed hotel for United Arab Emirates was Millennium Hotel Lo
The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hot
The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 review

python

4. How many reviews are there per hotel (frequency count of hotel) in the dataset?

You may notice that the counted in the dataset results do not match the value in

Total_Number_of_Reviews . It is unclear if this value in the dataset represented the total

number of reviews the hotel had, but not all were scraped, or some other calculation.

Total_Number_of_Reviews is not used in the model because of this unclarity.

5. While there is an Average_Score column for each hotel in the dataset, you can also calculate

an average score (getting the average of all reviewer scores in the dataset for each hotel). Add a

new column to your dataframe with the column header Calc_Average_Score that contains

that calculated average. Print out the columns Hotel_Name , Average_Score , and

Calc_Average_Score .

The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 revie
The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews.
The most reviewed hotel for Canada was St James Court A Taj Hotel London

First create a new dataframe based on the old one, removing the uneede
hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring"

Group the rows by Hotel_Name, count them and put the result in a new c
hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name

Get rid of all the duplicated rows
hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"])
display(hotel_freq_df)

Hotel_Name Total_Number_of_Reviews
Britannia International Hotel Canary Wharf 9086
Park Plaza Westminster Bridge London 12158
Copthorne Tara Hotel London Kensington 7105
...
Mercure Paris Porte d Orleans 110
Hotel Wagner 135
Hotel Gallitzinberg 173

python

define a function that takes a row and performs some calculation with
def get_difference_review_avg(row):
 return row["Average_Score"] - row["Calc_Average_Score"]

'mean' is mathematical word for 'average'

python

You may also wonder about the supplied in dataset Average_Score value and why it is

sometimes different from the calculated average score. As we can't know why some of the values

match, but others have a difference, it's safest in this case to use the review scores that we have

to calculate the average ourselves. That said, the differences are usually very small, here are the

hotels with the greatest deviation from the dataset average and the calculated average:

Average_Score_Difference Average_Score Calc_Average_Score Hotel_Name

-0.8 7.7 8.5
Best Western Hotel

Astoria

-0.7 8.8 9.5

Hotel Stendhal Place

Vend me Paris

MGallery

-0.7 7.5 8.2
Mercure Paris Porte d

Orleans

-0.7 7.9 8.6
Renaissance Paris

Vendome Hotel

-0.5 7.0 7.5 Hotel Royal Elys es

...

0.7 7.5 6.8
Mercure Paris Op ra

Faubourg Montmartre

df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score

Add a new column with the difference between the two average scores
df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axi

Create a df without all the duplicates of Hotel_Name (so only 1 row pe
review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"])

Sort the dataframe to find the lowest and highest average score differ
review_scores_df = review_scores_df.sort_values(by=["Average_Score_Diffe

display(review_scores_df[["Average_Score_Difference", "Average_Score", "

Average_Score_Difference Average_Score Calc_Average_Score Hotel_Name

0.8 7.1 6.3

Holiday Inn Paris

Montparnasse

Pasteur

0.9 6.8 5.9 Villa Eugenie

0.9 8.6 7.7

MARQUIS Faubourg

St Honor Relais Ch

teaux

1.3 7.2 5.9 Kube Hotel Ice Bar

With only 1 hotel having a difference of score greater than 1, it means we can probably ignore the

difference and use the calculated average score.

6. Calculate and print out how many rows have column Negative_Review values of "No

Negative"

7. Calculate and print out how many rows have column Positive_Review values of "No

Positive"

8. Calculate and print out how many rows have column Positive_Review values of "No

Positive" and Negative_Review values of "No Negative"

with lambdas:
start = time.time()
no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] ==
print("Number of No Negative reviews: " + str(len(no_negative_reviews[no

no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] ==
print("Number of No Positive reviews: " + str(len(no_positive_reviews[no

both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No
print("Number of both No Negative and No Positive reviews: " + str(len(b
end = time.time()
print("Lamdas took " + str(round(end - start, 2)) + " seconds")

Number of No Negative reviews: 127890
Number of No Positive reviews: 35946
Number of both No Negative and No Positive reviews: 127
Lamdas took 9.64 seconds

python

Another way to do that one is without Lambdas, and use sum to count the rows:

You may have noticed that there are 127 rows that have both "No Negative" and "No Positive"

values for the columns Negative_Review and Positive_Review respectively. That means

that the reviewer gave the hotel a numerical score, but declined to write either a positive or

negative review. Luckily this is a small amount of rows (127 out of 515738, or 0.02%), so it

probably won't skew our model or results in any particular direction, but you might not have

expected a data set of reviews to have rows with no reviews, so worth exploring the data to

discover rows like this.

Modifying the DataFrame

Now that you've explored the dataset, you can see some issues with it. Some columns are are filled

with useless information, others are just incorrect, or if they are correct, it's unclear how to they were

calculated, and answers cannot be independently verified by your own calculations.

Next, you will add columns that will be useful later, change the values in other columns, and drop

certain columns completely.

Follow these steps in order:

1. Hotel_Name , Hotel_Address , lat (latitude), lng (longitude)

without lambdas (using a mixture of notations to show you can use both
start = time.time()
no_negative_reviews = sum(df.Negative_Review == "No Negative")
print("Number of No Negative reviews: " + str(no_negative_reviews))

no_positive_reviews = sum(df["Positive_Review"] == "No Positive")
print("Number of No Positive reviews: " + str(no_positive_reviews))

both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positi
print("Number of both No Negative and No Positive reviews: " + str(both_

end = time.time()
print("Sum took " + str(round(end - start, 2)) + " seconds")

Number of No Negative reviews: 127890
Number of No Positive reviews: 35946
Number of both No Negative and No Positive reviews: 127
Sum took 0.19 seconds

python

1. Drop lat and lng

2. Replace Hotel_Address values with the following values (if the address contains the same of

the city and the country, change it to just the city and the country).

These are the only cities and countries in the dataset:

Amsterdam, Netherlands

Barcelona, Spain

London, United Kingdom

Milan, Italy

Paris, France

Vienna, Austria

Now you can query country level data:

Hotel_Address Hotel_Name

def replace_address(row):
 if "Netherlands" in row["Hotel_Address"]:
 return "Amsterdam, Netherlands"
 elif "Barcelona" in row["Hotel_Address"]:
 return "Barcelona, Spain"
 elif "United Kingdom" in row["Hotel_Address"]:
 return "London, United Kingdom"
 elif "Milan" in row["Hotel_Address"]:
 return "Milan, Italy"
 elif "France" in row["Hotel_Address"]:
 return "Paris, France"
 elif "Vienna" in row["Hotel_Address"]:
 return "Vienna, Austria"

Replace all the addresses with a shortened, more useful form
df["Hotel_Address"] = df.apply(replace_address, axis = 1)
The sum of the value_counts() should add up to the total number of
print(df["Hotel_Address"].value_counts())

python

display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"}))
python

Hotel_Address Hotel_Name

Amsterdam, Netherlands 105

Barcelona, Spain 211

London, United Kingdom 400

Milan, Italy 162

Paris, France 458

Vienna, Austria 158

2. Hotel Meta-review columns: Average_Score , Total_Number_of_Reviews ,

Additional_Number_of_Scoring

Drop Additional_Number_of_Scoring

Replace Total_Number_of_Reviews with the total number of reviews for that hotel that are

actually in the dataset and

Replace Average_Score with our own calculated score

Review columns

Drop Review_Total_Negative_Word_Counts ,

Review_Total_Positive_Word_Counts , Review_Date and days_since_review

Keep Reviewer_Score , Negative_Review , and Positive_Review as they are,

Keep Tags

We'll be doing some NLP operations on the tags in the next section.

Reviewer columns

Drop Total_Number_of_Reviews_Reviewer_Has_Given

Keep Reviewer_Nationality

Drop `Additional_Number_of_Scoring`
df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True)
Replace `Total_Number_of_Reviews` and `Average_Score` with our own cal
df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')
df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transfo

python

Finally, save the dataset as it is now with a new name, then proceed to the NLP section.

🚀Challenge

Pre-lecture quiz

Review & Self Study

Assignment

Poetic license

Pre-lecture quiz

Post-lecture quiz

Review & Self Study

Explore SMOTE's API. What use cases is it best used for? What problems does it solve?

df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_C

Saving new data file with calculated columns
print("Saving results to Hotel_Reviews_Filtered.csv")
df.to_csv(r'Hotel_Reviews_Filtered.csv', index = False)

python

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/38/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/39/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/40/

Assignment

Explore classification methods

Introduction to time series forecasting

Sketchnote by Tomomi Imura

In this lesson and the following one, you will learn a bit about time series forecasting, an interesting

and valuable part of a ML scientist's repertoire that is a bit lesser known than other topics. Time

series forecasting is a sort of crystal ball: based on past performance of a variable such as price, you

can predict its future potential value.

https://www.twitter.com/girlie_mac

🎥 Click the image above for a video about time series forecasting

Pre-lecture quiz

It's a useful and interesting field with real value to business, given its direct application to problems of

pricing, inventory, and supply chain issues. While deep learning techniques have started to be used

to gain more insights in the prediction of future performance, time series forecasting remains a field

greatly informed by classic ML techniques.

Penn State's useful time series curriculum can be found here

Introduction

Supposing you maintain an array of smart parking meters that provide data about how often they are

used and for how long over time. What if you could generate revenue to maintain your streets by

slightly augmenting the prices of the meters when there is greater demand for them? What if you

could predict, based on the meter's past performance, its future value according to the laws of

supply and demand? This is a challenge that could be tackled by time series forecasting. It wouldn't

make those folks in search of a rare parking spot in busy times very happy to have to pay more for it,

but it would be a sure way to generate revenue to clean the streets!

https://youtu.be/cBojo1hsHiI
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/41/
https://online.stat.psu.edu/stat510/lesson/1

Let's explore some of the types of time series algorithms and start a notebook to clean and prepare

some data. The data you will analyze is taken from the GEFCom2014 forecasting competition. It

consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. Given

the historical patterns of electricity load and temperature, you can predict future values of electricity

load. In this example, you'll learn how to forecast one time step ahead, using historical load data only.

Before starting, however, it's useful to understand what's going on behind the scenes.

Some definitions

When encountering the term 'time series' you need to understand its use in several different

contexts.

🎓 Time series

In mathematics, "a time series is a series of data points indexed (or listed or graphed) in time order.

Most commonly, a time series is a sequence taken at successive equally spaced points in time." An

example of a time series is the daily closing value of the Dow Jones Industrial Average. The use of

time series plots and statistical modeling is frequently encountered in signal processing, weather

forecasting, earthquake prediction, and other fields where events occur and data points can be

plotted over time.

🎓 Time series analysis

Time series analysis is the analysis of the above mentioned time series data. Time series data can

take distinct forms, including 'interrupted time series' which detects patterns in a time series'

evolution before and after an interrupting event. The type of analysis needed for the time series

depends on the nature of the data. Time series data itself can take the form of series of numbers or

characters.

The analysis be performed using a variety of methods, including frequency-domain and time-domain,

linear and nonlinear, and more. Learn more about the may ways to analyze this type of data.

🎓 Time series forecasting

Time series forecasting is the use of a model to predict future values based on patterns displayed by

previously gathered data as it occurred in the past. While it is possible to use regression models to

explore time series data, with time indices as x variables on a plot, this type of data is best analyzed

using special types of models.

Time series data is a list of ordered observations, unlike data that can be analyzed by linear

regression. The most common one is ARIMA, an acronym that stands for "Autoregressive Integrated

Moving Average".

https://wikipedia.org/wiki/Time_series
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm

ARIMA models "relate the present value of a series to past values and past prediction errors." They

are most appropriate for analyzing time-domain data, where data is ordered over time.

There are several types of ARIMA models, which you can learn about here and which you will

touch on in the next lesson.

In the next lesson, you will build an ARIMA model using Univariate Time Series, which focuses on one

variable that changes its value over time. An example of this type of data is this dataset that records

the monthly C02 concentration at the Mauna Loa Observatory:

CO2 YearMonth Year Month

330.62 1975.04 1975 1

331.40 1975.13 1975 2

331.87 1975.21 1975 3

333.18 1975.29 1975 4

333.92 1975.38 1975 5

333.43 1975.46 1975 6

331.85 1975.54 1975 7

330.01 1975.63 1975 8

328.51 1975.71 1975 9

328.41 1975.79 1975 10

329.25 1975.88 1975 11

330.97 1975.96 1975 12

✅ Identify the variable that changes over time in this dataset

https://online.stat.psu.edu/stat510/lesson/1/1.1
https://people.duke.edu/~rnau/411arim.htm
https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm
https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm

Time Seriesdata characteristics to consider

When looking at time series data, you might notice that it has certain characteristics that you need to

take into account and mitigate to better understand its patterns. If you consider time series data as

potentially providing a 'signal' that you want to analyze, these characteristics can be thought of as

'noise'. You often will need to reduce this 'noise' by offsetting some of these characteristics using

some statistical techniques.

🎓 Trends

Measurable increases and decreases over time. Read more about how to use and, if necessary,

remove trends from your time series.

🎓 Seasonality

Periodic fluctuations, such as holiday rushes that might affect sales, for example. Take a look at how

different types of plots display seasonality in data.

🎓 Outliers

Outliers are far away from the standard data variance.

🎓 Long-run cycle

Independent of seasonality, data might display a long-run cycle such as an economic down-turn that

lasts longer than a year.

🎓 Constant variance

Over time, some data display constant fluctuations, such as energy usage per day and night.

🎓 Abrupt changes

The data might display an abrupt change that might need further analysis. The abrupt shuttering of

businesses due to COVID, for example, caused changes in data.

✅ Here is a sample time series plot showing daily in-game currency spent over a few years. Can you

identify any of the characteristics listed above in this data?

https://online.stat.psu.edu/stat510/lesson/1/1.1
https://machinelearningmastery.com/time-series-trends-in-python
https://machinelearningmastery.com/time-series-seasonality-with-python/
https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm
https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python

Exercise: Getting started with power usage data

Let's get started creating a time series model to predict future power usage given past usage.

The data in this example is taken from the GEFCom2014 forecasting competition. It consists

of 3 years of hourly electricity load and temperature values between 2012 and 2014.

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J.

Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and

beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September,

2016.

1. In the working folder of this lesson, open the notebook.ipynb file. Start by adding libraries

that will help you load and visualize data

Note, you are using the files from the included common folder which set up your environment and

handle downloading the data.

2. Next, examine the data as a dataframe

import os
import matplotlib.pyplot as plt
from common.utils import load_data
%matplotlib inline

python

You can see that there are two columns representing date and load:

load

2012-01-01 00 0000 2698.0

2012-01-01 01 0000 2558.0

2012-01-01 02 0000 2444.0

2012-01-01 03 0000 2402.0

2012-01-01 04 0000 2403.0

3. Now, plot the data:

data_dir = './data'
energy = load_data(data_dir)[['load']]
energy.head()

python

energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()

python

4. Now, plot the first week of July 2014

A beautiful plot! Take a look at these plots and see if you can determine any of the characteristics

listed above. What can we surmise just by visualizing the data?

In the next lesson, you will create an ARIMA model to create some forecasts.

🚀Challenge

Make a list of all the industries and areas of inquiry you can think of that would benefit from time

series forecasting. Can you think of an application of these techniques in the arts? In Econometrics?

Ecology? Retail? Industry? Finance? Where else?

Post-lecture quiz

energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()

python

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/42/

Review & Self Study

Although we won't cover them here, neural networks are sometimes used to enhance classic

methods of time series forecasting. Read more about them in this article

Assignment

Visualize some more time series

Time series forecasting with ARIMA
In the previous lesson, you learned a bit about time series forecasting and loaded a dataset showing

the fluctuations of electrical load over a time period.

🎥 Click the image above for a video: A brief introduction to ARIMA models. The example is

done in R, but the concepts are universal.

Pre-lecture quiz

https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412
https://youtu.be/IUSk-YDau10
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/43/

In this lesson, you will discover a specific way to build models with ARIMA: AutoRegressive Integrated

Moving Average. ARIMA models are particularly suited to fit data that shows non-stationarity.

🎓 Stationarity

From a statistical context, stationarity refers to data whose distribution does not change when shifted

in time. Non-stationary data, then, shows fluctuations due to trends that must be transformed to be

analyzed. Seasonality, for example, can introduce fluctuations in data and can be eliminated by a

process of 'seasonal-differencing'.

🎓 Differencing

Differencing data, again from a statistical context, refers to the process of transforming non-

stationary data to make it stationary by removing its non-constant trend. "Differencing removes the

changes in the level of a time series, eliminating trend and seasonality and consequently stabilizing

the mean of the time series." Paper by Shixiong et al

Let's unpack the parts of ARIMA to better understand how it helps us model time series and help us

make predictions against it.

AR - for AutoRegressive

Autoregressive models, as the name implies, look 'back' in time to analyze previous values in your

data and make assumptions about them. These previous values are called 'lags'. An example would

be data that shows monthly sales of pencils. Each month's sales total would be considered an

'evolving variable' in the dataset. This model is built as the "evolving variable of interest is regressed

on its own lagged (i.e., prior) values." wikipedia

I - for Integrated

As opposed to the similar 'ARMA' models, the 'I' in ARIMA refers to its integrated aspect. The data is

'integrated' when differencing steps are applied so as to eliminate non-stationarity.

MA - for Moving Average

The moving-average aspect of this model refers to the output variable that is determined by

observing the current and past values of lags.

https://wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://wikipedia.org/wiki/Stationary_process
https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing
https://arxiv.org/abs/1904.07632
https://wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://wikipedia.org/wiki/Order_of_integration
https://wikipedia.org/wiki/Moving-average_model

Bottom line: ARIMA is used to make a model fit the special form of time series data as closely as

possible.

Exercise: build an ARIMA model

Open the /working folder in this lesson and find the notebook.ipynb file. Run the notebook to load

the statsmodels Python library; you will need this for ARIMA models.

1. Load necessary libraries

Now, load up several more libraries useful for plotting data:

2. Load the data

Load the data from the /data/energy.csv file into a Pandas dataframe and take a look:

3. Plot the data

Plot all the available energy data from January 2012 to December 2014. There should be no surprises

as we saw this data in the last lesson:

import os
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import datetime as dt
import math

from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.preprocessing import MinMaxScaler
from common.utils import load_data, mape
from IPython.display import Image

%matplotlib inline
pd.options.display.float_format = '{:,.2f}'.format
np.set_printoptions(precision=2)
warnings.filterwarnings("ignore") # specify to ignore warning messages

python

energy = load_data('./data')[['load']]
energy.head(10)

python

Now, let's build a model!

4. Create training and testing datasets

Now your data is loaded, so you can separate it into train and test sets. You'll train your model on the

train set. As usual, after the model has finished training, you'll evaluate its accuracy using the test set.

You need to ensure that the test set covers a later period in time from the training set to ensure that

the model does not gain information from future time periods.

Allocate a two-month period from September 1 to October 31, 2014 to the training set. The test set

will include the two-month period of November 1 to December 31, 2014.

Since this data reflects the daily consumption of energy, there is a strong seasonal pattern, but the

consumption is most similar to the consumption in more recent days. You can visualize the

differences:

energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()

python

train_start_dt = '2014-11-01 00:00:00'
test_start_dt = '2014-12-30 00:00:00'

python

energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][
 .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}),
 .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()

python

Therefore, using a relatively small window of time for training the data should be sufficient.

Note: Since the function we use to fit the ARIMA model uses in-sample validation during

fitting, we will omit validation data.

5. Prepare the data for training

Now, you need to prepare the data for training by performing two tasks:

Filter the original dataset to include only the aforementioned time periods per set and only

including the needed column 'load' plus the date:

train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < te
test = energy.copy()[energy.index >= test_start_dt][['load']]

print('Training data shape: ', train.shape)
print('Test data shape: ', test.shape)

python

You can see the shape of the data:
markup

Scale the data to be in the range (0, 1).

6. Now, visualize the original vs. scaled data:

The original data

Training data shape: (1416, 1)
Test data shape: (48, 1)

output

scaler = MinMaxScaler()
train['load'] = scaler.fit_transform(train)
train.head(10)

python

energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][
train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=1
plt.show()

python

The scaled data

Now that you have calibrated the scaled data, you can scale the test data:

7. Implement ARIMA

It's time to implement ARIMA! You'll now use the statsmodels library that you installed earlier.

Now you need to follow several steps

1. Define the model by calling SARIMAX() and passing in the model parameters: p, d, and q

parameters, and P, D, and Q parameters.

2. The model is prepared on the training data by calling the fit() function.

3. Predictions can be made by calling the forecast() function and specifying the number of

steps (the horizon) to forecast

🎓 What are all these parameters for? In an ARIMA model there are 3 parameters that are

used to help model the major aspects of a time series: seasonality, trend, and noise. These

parameters are:

p : the parameter associated with the auto-regressive aspect of the model, which incorporates past

values. d : the parameter associated with the integrated part of the model, which affects the

amount of differencing (🎓 remember differencing 👆 ?) to apply to a time series. q : the parameter

associated with the moving-average part of the model.

test['load'] = scaler.transform(test)
test.head()

python

Note: If your data has a seasonal aspect - which this one does - , we use a seasonal ARIMA

model (SARIMA). In that case you need to use another set of parameters: P , D , and Q

which describe the same associations as p , d , and q , but correspond to the seasonal

components of the model.

Start by setting your preferred horizon value. Let's try 3 hours:

Selecting the best values for an ARIMA model's parameters can be challenging as it's somewhat

subjective and time intensive. You might consider using an auto_arima() function from the

pyramid library, but for now try some manual selections to find a good model.

A table of results is printed.

You've built your first model! Now we need to find a way to evaluate it.

8. Evaluate your model

To evaluate your model, you can perform the so-called walk forward validation. In practice, time

series models are re-trained each time a new data becomes available. This allows the model to make

the best forecast at each time step.

Starting at the beginning of the time series using this technique, train the model on the train data set.

Then make a prediction on the next time step. The prediction is evaluated against the known value.

The training set is then expanded to include the known value and the process is repeated.

Specify the number of steps to forecast ahead
HORIZON = 3
print('Forecasting horizon:', HORIZON, 'hours')

python

order = (4, 1, 0)
seasonal_order = (1, 1, 0, 24)

model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)
results = model.fit()

print(results.summary())

python

https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html

Note: You should keep the training set window fixed for more efficient training so that every

time you add a new observation to the training set, you remove the observation from the

beginning of the set.

This process provides a more robust estimation of how the model will perform in practice. However, it

comes at the computation cost of creating so many models. This is acceptable if the data is small or

if the model is simple, but could be an issue at scale.

Walk-forward validation is the gold standard of time series model evaluation and is recommended for

your own projects.

First, create a test data point for each HORIZON step.

load load+1 load+2

2014-12-30 00 0000 0.33 0.29 0.27

2014-12-30 01 0000 0.29 0.27 0.27

2014-12-30 02 0000 0.27 0.27 0.30

2014-12-30 03 0000 0.27 0.30 0.41

2014-12-30 04 0000 0.30 0.41 0.57

The data is shifted horizontally according to its horizon point.

Now, make predictions on your test data using this sliding window approach in a loop the size of the

test data length:

test_shifted = test.copy()

for t in range(1, HORIZON):
 test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')

test_shifted = test_shifted.dropna(how='any')
test_shifted.head(5)

python

You can watch the training occurring:

Now you can compare the predictions to the actual load:

%%time
training_window = 720 # dedicate 30 days (720 hours) for training

train_ts = train['load']
test_ts = test_shifted

history = [x for x in train_ts]
history = history[(-training_window):]

predictions = list()

order = (2, 1, 0)
seasonal_order = (1, 1, 0, 24)

for t in range(test_ts.shape[0]):
 model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_ord
 model_fit = model.fit()
 yhat = model_fit.forecast(steps = HORIZON)
 predictions.append(yhat)
 obs = list(test_ts.iloc[t])
 # move the training window
 history.append(obs[0])
 history.pop(0)
 print(test_ts.index[t])
 print(t+1, ': predicted =', yhat, 'expected =', obs)

python

2014-12-30 00:00:00
1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626

2014-12-30 01:00:00
2 : predicted = [0.3 0.29 0.3] expected = [0.2900626678603402, 0.27394807

2014-12-30 02:00:00
3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891

output

eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1,
eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]

python

Observe the hourly data's prediction, compared to the actual load. How accurate is this?

Check the accuracy of your model by testing its mean absolute percentage error (MAPE) over all the

predictions.

🧮 Show me the math

MAPE is used to show prediction accuracy as a ratio defined by the above formula. The

difference between actual and predicted is divided by the actual . "The absolute value in this

calculation is summed for every forecasted point in time and divided by the number of fitted

points n." wikipedia

If this equation is expressed in code:

eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', va
eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()
eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['pred
eval_df.head()

		timestamp	h	prediction	actual
0	2014-12-30	00:00:00	t+1	3,008.74	3,023.00
1	2014-12-30	01:00:00	t+1	2,955.53	2,935.00
2	2014-12-30	02:00:00	t+1	2,900.17	2,899.00
3	2014-12-30	03:00:00	t+1	2,917.69	2,886.00
4	2014-12-30	04:00:00	t+1	2,946.99	2,963.00

output

t t t

if(HORIZON > 1):
 eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / ev
 print(eval_df.groupby('h')['APE'].mean())

python

https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/
https://wikipedia.org/wiki/Mean_absolute_percentage_error

You can calculate one step's MAPE:

One step forecast MAPE: 0.5570581332313952 %

And while you're at it, print the multi-step forecast MAPE:

A nice low number is best: consider that a forecast that has a MAPE of 10 is off by 10%.

But as always, it's easier to see this kind of accuracy measurement visually, so let's plot it:

print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['pre
python

print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['ac
python

Multi-step forecast MAPE: 1.1460048657704118 %
output

 if(HORIZON == 1):
 ## Plotting single step forecast
 eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b

else:
 ## Plotting multi step forecast
 plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]
 for t in range(1, HORIZON+1):
 plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['predictio

 fig = plt.figure(figsize=(15, 8))
 ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', lin
 ax = fig.add_subplot(111)
 for t in range(1, HORIZON+1):
 x = plot_df['timestamp'][(t-1):]
 y = plot_df['t+'+str(t)][0:len(x)]
 ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.

 ax.legend(loc='best')

plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()

python

🏆 A very nice plot, showing a model with good accuracy. Well done!

🚀Challenge

Dig into the ways to test the accuracy of a Time Series Model. We touch on MAPE in this lesson, but

are there other methods you could use? Research them and annotate them. A helpful document can

be found here

Post-lecture quiz

Review & Self Study

This lesson touches on only the basics of Time Series Forecasting with ARIMA. Take some time to

deepen your knowledge by digging into this repository and its various model types to learn other

ways to build Time Series models.

Assignment

https://otexts.com/fpp2/accuracy.html
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/44/
https://microsoft.github.io/forecasting/

A new ARIMA model

Introduction to Reinforcement Learning

and Q-Learning

🎥 Click the image above to hear Dmitry discuss Reinforcement Learning

Pre-lecture quiz

In this lesson, we will explore the world of Peter and the Wolf, inspired by a musical fairy tale by a

Russian composer, Sergei Prokofiev. We will use Reinforcement Learning to let Peter explore his

environment, collect tasty apples and avoid meeting the wolf.

Prerequisites and Setup

In this lesson, we will be experimenting with some code in Python. You should be able to run the

Jupyter Notebook code from this lesson, either on your computer or somewhere in the cloud.

You can open the lesson notebook and continue reading the material there, or continue reading here,

and run the code in your favorite Python environment.

https://www.youtube.com/watch?v=lDq_en8RNOo
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/45/
https://en.wikipedia.org/wiki/Peter_and_the_Wolf
https://en.wikipedia.org/wiki/Sergei_Prokofiev

Note: If you are opening this code from the cloud, you also need to fetch the rlboard.py

file, which is used in the notebook code. Add it to the same directory as the notebook.

Introduction

Reinforcement Learning (RL) is a learning technique that allows us to learn an optimal behavior of an

agent in some environment by running many experiments. An agent in this environment should have

some goal, defined by a reward function.

The environment

For simplicity, let's consider Peter's world to be a square board of size width x height , like this:

Each cell in this board can either be:

ground, on which Peter and other creatures can walk

water, on which you obviously cannot walk

a tree or grass, a place where you can rest

an apple, which represents something Peter would be glad to find in order to feed himself

a wolf, which is dangerous and should be avoided

There is a separate Python module, rlboard.py , which contains the code to work with this

environment. Because this code is not important for understanding our concepts, we will just import

the module and use it to create the sample board (code block 1):

This code should print a picture of the environment similar to the one above.

Actions and policy

In our example, Peter's goal would be to find an apple, while avoiding the wolf and other obstacles. To

do this, he can essentially walk around until he finds an apple. Therefore, at any position he can

choose between one of the following actions: up, down, left and right. We will define those actions as

a dictionary, and map them to pairs of corresponding coordinate changes. For example, moving right

(R) would correspond to a pair (1,0) . (code block 2)

The strategy of our agent (Peter) is defined by a so-called policy. A policy is a function that returns

the action at any given state. In our case, the state of the problem is represented by the board,

including the current position of the player.

The goal of reinforcement learning is to eventually learn a good policy that will allow us to solve the

problem efficiently. However, as a baseline, let's consider the simplest policy called random walk.

Random walk

Let's first solve our problem by implementing a random walk strategy. With random walk, we will

randomly choose the next action from the allowed actions, until we reach the apple (code block 3).

from rlboard import *

width, height = 8,8
m = Board(width,height)
m.randomize(seed=13)
m.plot()

python

actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) }
action_idx = { a : i for i,a in enumerate(actions.keys()) }

python

The call to walk should return the length of the corresponding path, which can vary from one run

to another. We can run the walk experiment a number of times (say, 100), and print the resulting

statistics (code block 4):

def random_policy(m):
 return random.choice(list(actions))

def walk(m,policy,start_position=None):
 n = 0 # number of steps
 # set initial position
 if start_position:
 m.human = start_position
 else:
 m.random_start()
 while True:
 if m.at() == Board.Cell.apple:
 return n # success!
 if m.at() in [Board.Cell.wolf, Board.Cell.water]:
 return -1 # eaten by wolf or drowned
 while True:
 a = actions[policy(m)]
 new_pos = m.move_pos(m.human,a)
 if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:
 m.move(a) # do the actual move
 break
 n+=1

walk(m,random_policy)

python

def print_statistics(policy):
 s,w,n = 0,0,0
 for _ in range(100):
 z = walk(m,policy)
 if z<0:
 w+=1
 else:
 s += z
 n += 1
 print(f"Average path length = {s/n}, eaten by wolf: {w} times")

print_statistics(random_policy)

python

Note that the average length of a path is around 30-40 steps, which is quite a lot, given the fact that

the average distance to the nearest apple is around 5-6 steps.

You can also see what Peter's movement looks like during the random walk:

Reward function

To make our policy more intelligent, we need to understand which moves are "better" than others. To

do this, we need to define our goal. The goal can be defined in terms of a reward function, which will

return some score value for each state. The higher the number, the better the reward function. (code

block 5)

move_reward = -0.1
goal_reward = 10
end_reward = -10

def reward(m,pos=None):
 pos = pos or m.human
 if not m.is_valid(pos):
 return end_reward
 x = m.at(pos)
 if x==Board.Cell.water or x == Board.Cell.wolf:
 return end_reward
 if x==Board.Cell.apple:

python

An interesting thing about reward functions is that in most cases, we are only given a substantial

reward at the end of the game. This means that our algorithm should somehow remember "good"

steps that lead to a positive reward at the end, and increase their importance. Similarly, all moves that

lead to bad results should be discouraged.

Q-Learning

An algorithm that we will discuss here is called Q-Learning. In this algorithm, the policy is defined by

a function (or a data structure) called a Q-Table. It records the "goodness" of each of the actions in a

given state.

It is called a Q-Table because it is often convenient to represent it as a table, or multi-dimensional

array. Since our board has dimensions width x height , we can represent the Q-Table using a

numpy array with shape width x height x len(actions) : (code block 6)

Notice that we initialize all the values of the Q-Table with an equal value, in our case - 0.25. This

corresponds to the "random walk" policy, because all moves in each state are equally good. We can

pass the Q-Table to the plot function in order to visualize the table on the board: m.plot(Q) .

 return goal_reward
 return move_reward

Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)
python

In the center of each cell there is an "arrow" that indicates the preferred direction of movement. Since

all directions are equal, a dot is displayed.

Now we need to run the simulation, explore our environment, and learn a better distribution of Q-

Table values, which will allow us to find the path to the apple much faster.

Essence of Q-Learning: Bellman Equation

Once we start moving, each action will have a corresponding reward, i.e. we can theoretically select

the next action based on the highest immediate reward. However, in most states, the move will not

achieve our goal of reaching the apple, and thus we cannot immediately decide which direction is

better.

Remember that it is not the immediate result that matters, but rather the final result, which we

will obtain at the end of the simulation.

In order to account for this delayed reward, we need to use the principles of dynamic programming,

which allow us to think about out problem recursively.

Suppose we are now at the state s, and we want to move to the next state s'. By doing so, we will

receive the immediate reward r(s,a), defined by the reward function, plus some future reward. If we

suppose that our Q-Table correctly reflects the "attractiveness" of each action, then at state s' we

https://en.wikipedia.org/wiki/Dynamic_programming

will chose an action a that corresponds to maximum value of Q(s',a'). Thus, the best possible future

reward we could get at state s will be defined as max Q(s',a') (maximum here is computed over all

possible actions a' at state s').

This gives the Bellman formula for calculating the value of the Q-Table at state s, given action a:

Here γ is the so-called discount factor that determines to which extent you should prefer the current

reward over the future reward and vice versa.

Learning Algorithm

Given the equation above, we can now write pseudo-code for our leaning algorithm:

Initialize Q-Table Q with equal numbers for all states and actions

Set learning rate α ← 1

Repeat simulation many times

1. Start at random position

2. Repeat

1. Select an action a at state s

2. Execute action by moving to a new state s'

3. If we encounter end-of-game condition, or total reward is too small - exit simulation

4. Compute reward r at the new state

5. Update Q-Function according to Bellman equation: Q(s,a) ← (1-α)Q(s,a)+α(r+γ

max Q(s',a'))

6. s ← s'

7. Update the total reward and decrease α.

Exploit vs. explore

In the algorithm above, we did not specify how exactly we should choose an action at step 2.1. If we

are choosing the action randomly, we will randomly explore the environment, and we are quite likely

to die often as well as explore areas where we would not normally go. An alternative approach would

be to exploit the Q-Table values that we already know, and thus to choose the best action (with

higher Q-Table value) at state s. This, however, will prevent us from exploring other states, and it's

likely we might not find the optimal solution.

a'

a'

Thus, the best approach is to strike a balance between exploration and exploitation. This can be done

by choosing the action at state s with probabilities proportional to values in the Q-Table. In the

beginning, when Q-Table values are all the same, it would correspond to a random selection, but as

we learn more about our environment, we would be more likely to follow the optimal route while

allowing the agent to choose the unexplored path once in a while.

Python implementation

We are now ready to implement the learning algorithm. Before we do that, we also need some

function that will convert arbitrary numbers in the Q-Table into a vector of probabilities for

corresponding actions: (code block 7)

We add a few eps to the original vector in order to avoid division by 0 in the initial case, when all

components of the vector are identical.

The actual learning algorithm we will run for 5000 experiments, also called epochs: (code block 8)

def probs(v,eps=1e-4):
 v = v-v.min()+eps
 v = v/v.sum()
 return v

python

for epoch in range(5000):

 # Pick initial point
 m.random_start()

 # Start travelling
 n=0
 cum_reward = 0
 while True:
 x,y = m.human
 v = probs(Q[x,y])
 a = random.choices(list(actions),weights=v)[0]
 dpos = actions[a]
 m.move(dpos,check_correctness=False) # we allow player to move outs
 r = reward(m)
 cum_reward += r
 if r==end_reward or cum_reward < -1000:
 lpath.append(n)

python

After executing this algorithm, the Q-Table should be updated with values that define the

attractiveness of different actions at each step. We can try to visualize the Q-Table by plotting a

vector at each cell that will point in the desired direction of movement. For simplicity, we draw a small

circle instead of an arrow head.

Checking the policy

Since the Q-Table lists the "attractiveness" of each action at each state, it is quite easy to use it to

define the efficient navigation in our world. In the simplest case, we can select the action

corresponding to the highest Q-Table value: (code block 9)

If you try the code above several times, you may notice that sometimes it "hangs", and you

need to press the STOP button in the notebook to interrupt it. This happens because there

could be situations when two states "point" to each other in terms of optimal Q-Value, in

which case the agents ends up moving between those states indefinitely.

🚀Challenge

 break
 alpha = np.exp(-n / 10e5)
 gamma = 0.5
 ai = action_idx[a]
 Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos
 n+=1

def qpolicy_strict(m):
 x,y = m.human
 v = probs(Q[x,y])
 a = list(actions)[np.argmax(v)]
 return a

walk(m,qpolicy_strict)

python

Task 1: Modify the walk function to limit the maximum length of path by a certain number

of steps (say, 100), and watch the code above return this value from time to time.

Task 2: Modify the walk function so that it does not go back to the places where is has

already been previously. This will prevent walk from looping, however, the agent can still

end up being "trapped" in a location from which it is unable to escape.

Navigation

A better navigation policy would be the one that we used during training, which combines exploitation

and exploration. In this policy, we will select each action with a certain probability, proportional to the

values in the Q-Table. This strategy may still result in the agent returning back to a position it has

already explored, but, as you can see from the code below, it results in a very short average path to

the desired location (remember that print_statistics runs the simulation 100 times): (code

block 10)

After running this code, you should get a much smaller average path length than before, in the range

of 3-6.

Investigating the learning process

As we have mentioned, the learning process is a balance between exploration and exploration of

gained knowledge about the structure of problem space. We have seen that the result of learning

(the ability to help an agent to find a short path to the goal) has improved, but it is also interesting to

observe how the average path length behaves during the learning process:

def qpolicy(m):
 x,y = m.human
 v = probs(Q[x,y])
 a = random.choices(list(actions),weights=v)[0]
 return a

print_statistics(qpolicy)

python

What we see here is that at first, the average path length increases. This is probably due to the fact

that when we know nothing about the environment, we are likely to get trapped in bad states, water

or wolf. As we learn more and start using this knowledge, we can explore the environment for longer,

but we still do not know where the apples are very well.

Once we learn enough, it becomes easier for the agent to achieve the goal, and the path length starts

to decrease. However, we are still open to exploration, so we often diverge away from the best path,

and explore new options, making the path longer than optimal.

What we also observe on this graph is that at some point, the length increased abruptly. This

indicates the stochastic nature of the process, and that we can at some point "spoil" the Q-Table

coefficients by overwriting them with new values. This ideally should be minimized by decreasing

learning rate (for example, towards the end of training, we only adjust Q-Table values by a small

value).

Overall, it is important to remember that the success and quality of the learning process significantly

depends on parameters, such as learning rate, learning rate decay, and discount factor. Those are

often called hyperparameters, to distinguish them from parameters, which we optimize during

training (for example, Q-Table coefficients). The process of finding the best hyperparameter values is

called hyperparameter optimization, and it deserves a separate topic.

Post-lecture quiz

AssignmentA More Realistic World

CartPole Skating
The problem we have been solving in the previous lesson might seem like a toy problem, not really

applicable for real life scenarios. This is not the case, because many real world problems also share

this scenario - including playing Chess or Go. They are similar, because we also have a board with

given rules and a discrete state.

In this lesson we will apply the same principles of Q-Learning to a problem with continuous state, i.e.

a state that is given by one or more real numbers. We will deal with the following problem:

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/46/

Problem: If Peter wants to escape from the wolf, he needs to be able to move faster. We will

see how Peter can learn to skate, in particular, to keep balance, using Q-Learning.

We will use a simplified version of balancing known as a CartPole problem. In the cartpole world, we

have a horizontal slider that can move left or right, and the goal is to balance a vertical pole on top of

the slider.

a cartpole

Pre-lecture quiz

Prerequisites

In this lesson, we will be using a library called OpenAI Gym to simulate different environments. You

can run this lesson's code locally (eg. from Visual Studio Code), in which case the simulation will

open in a new window. When running the code online, you may need to make some tweaks to the

code, as described here.

OpenAI Gym

In the previous lesson, the rules of the game and the state were given by the Board class which we

defined ourselves. Here we will use a special sumulation environment, which will simulate the

physics behind the balancing pole. One of the most popular simulation environments for training

reinforcement learning algorithms is called a Gym, which is maintained by OpenAI. By using this gym

we can create difference environments from a cartpole simulation to Atari games.

Note: You can see other environments available from OpenAI Gym here.

First, let's install the gym and import required libraries (code block 1):

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/47/
https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7
https://gym.openai.com/
https://openai.com/
https://gym.openai.com/envs/#classic_control

A cartpole environment

To work with a cartpole balancing problem, we need to initialize corresponding environment. Each

environment is associated with an:

Observation space that defines the structure of information that we receive from the

environment. For cartpole problem, we receive position of the pole, velocity and some other

values.

Action space that defines possible actions. In our case the action space is discrete, and consists

of two actions - left and right. (code block 2)

To see how the environment works, let's run a short simulation for 100 steps. At each step, we

provide one of the actions to be taken - in this simulation we just randomly select an action from

action_space . Run the code below and see what it leads to.

Note: Remember that it is preferred to run this code on local Python installation! (code block

3)

import sys
!{sys.executable} -m pip install gym

import gym
import matplotlib.pyplot as plt
import numpy as np
import random

python

env = gym.make("CartPole-v1")
print(env.action_space)
print(env.observation_space)
print(env.action_space.sample())

python

env.reset()

for i in range(100):
 env.render()

python

You should be seeing something similar to this one:

During simulation, we need to get observations in order to decide how to act. In fact, step function

returns us back current observations, reward function, and the done flag that indicates whether it

makes sense to continue the simulation or not: (code block 4)

You will end up seeing something like this in the notebook output:

 env.step(env.action_space.sample())
env.close()

env.reset()

done = False
while not done:
 env.render()
 obs, rew, done, info = env.step(env.action_space.sample())
 print(f"{obs} -> {rew}")
env.close()

python

[0.03403272 -0.24301182 0.02669811 0.2895829] -> 1.0
[0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0
[0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0
[0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0
[0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0

text

The observation vector that is returned at each step of the simulation contains the following values:

Position of cart

Velocity of cart

Angle of pole

Rotation rate of pole

We can get min and max value of those numbers: (code block 5)

You may also notice that reward value on each simulation step is always 1. This is because our goal is

to survive as long as possible, i.e. keep the pole to a reasonably vertical position for the longest

period of time.

In fact, CartPole simulation is considered solved if we manage to get the average reward of

195 over 100 consecutive trials.

State discretization

In Q=Learning, we need to build Q-Table that defines what to do at each state. To be able to do this,

we need state to be discreet, more precisely, it should contain finite number of discrete values. Thus,

we need somehow to discretize our observations, mapping them to a finite set of states.

There are a few ways we can do this:

If we know the interval of a certain value, we can divide this interval into a number of bins, and

then replace the value by the bin number that it belongs to. This can be done using the numpy

digitize method. In this case, we will precisely know the state size, because it will depend on

the number of bins we select for digitalization.

✅ We can use linear interpolation to bring values to some finite interval (say, from -20 to 20), and

then convert numbers to integers by rounding them. This gives us a bit less control on the size of

...
[0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0
[0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0

print(env.observation_space.low)
print(env.observation_space.high)

python

https://numpy.org/doc/stable/reference/generated/numpy.digitize.html

the state, especially if we do not know the exact ranges of input values. For example, in our case 2

out of 4 values do not have upper/lower bounds on their values, which may result in the infinite

number of states.

In our example, we will go with the second approach. As you may notice later, despite undefined

upper/lower bounds, those value rarely take values outside of certain finite intervals, thus those

states with extreme values will be very rare.

Here is the function that will take the observation from our model, and produces a tuple of 4 integer

values: (code block 6)

Let's also explore another discretization method using bins: (code block 7)

Let's now run a short simulation and observe those discrete environment values. Feel free to try both

discretize and discretize_bins and see if there is a difference.

Note: discretize_bins returns the bin number, which is 0-based, thus for values of

input variable around 0 it returns the number from the middle of the interval (10). In

discretize , we did not care about the range of output values, allowing them to be

negative, thus the state values are not shifted, and 0 corresponds to 0. (code block 8)

def discretize(x):
 return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))

python

def create_bins(i,num):
 return np.arange(num+1)*(i[1]-i[0])/num+i[0]

print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),1

ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each par
nbins = [20,20,10,10] # number of bins for each parameter
bins = [create_bins(ints[i],nbins[i]) for i in range(4)]

def discretize_bins(x):
 return tuple(np.digitize(x[i],bins[i]) for i in range(4))

python

env.reset()

python

Note: Uncomment the line starting with env.render if you want to see how the

environment executes. Otherwise you can execute it in the background, which is faster. We

will use this "invisible" execution during our Q-Learning process.

The Q-Table structure

In our previous lesson, the state was a simple pair of numbers from 0 to 8, and thus it was convenient

to represent Q-Table by a numpy tensor with a shape of 8x8x2. If we use bins discretization, the size

of our state vector is also known, so we can use the same approach and represent state by an array

of shape 20x20x10x10x2 (here 2 is the dimension of action space, and first dimensions correspond

to the number of bins we have selected to use for each of the parameters in observation space).

However, sometimes precise dimensions of the observation space are not known. In case of the

discretize function, we may never be sure that our state stays within certain limits, because

some of the original values are not bound. Thus, we will use a slightly different approach and

represent Q-Table by a dictionary.

We will use the pair (state,action) as the dictionary key, and the value would correspond to Q-Table

entry value. (code block 9)

Here we also define a function qvalues , which returns a list of Q-Table values for a given state

that corresponds to all possible actions. If the entry is not present in the Q-Table, we will return 0 as

the default.

done = False
while not done:
 #env.render()
 obs, rew, done, info = env.step(env.action_space.sample())
 #print(discretize_bins(obs))
 print(discretize(obs))
env.close()

Q = {}
actions = (0,1)

def qvalues(state):
 return [Q.get((state,a),0) for a in actions]

python

Let's start Q-Learning!

Now we are ready to teach Peter to balance! First, let's set some hyperparameters: (code block 10)

Here, alpha is the learning rate that defines to which extent we should adjust the current values

of Q-Table at each step. In the previous lesson we started with 1, and then decreased alpha to

lower values during training. In this example we will keep it constant just for simplicity, and you can

experiment with adjusting alpha values later.

gamma is the discount factor that shows to which extent we should prioritize future reward over

current reward.

epsilon is the exploration/exploitation factor that determines whether we should prefer

exploration to exploitation or vice versa. In our algorithm, we will in epsilon percent of the cases

select the next action according to Q-Table values, and in the remaining number of cases we will

execute a random action. This will allow us to explore areas of the search space that we have never

seen before.

✅ In terms of balancing - choosing random action (exploration) would act as a random punch in the

wrong direction, and the pole would have to learn how to recover the balance from those "mistakes"

We can also make two improvements to our algorithm from the previous lesson:

Calculating average cumulative reward over a number of simulations. We will print the progress

each 5000 iterations, and we will average out our cumulative reward over that period of time. It

means that if we get more than 195 point - we can consider the problem solved, with even higher

quality than required.

We will calculate maximum average cumulative result Qmax , and we will store the Q-Table

corresponding to that result. When you run the training you will notice that sometimes the

average cumulative result starts to drop, and we want to keep the values of Q-Table that

correspond to the best model observed during training.

We will also collect all cumulative rewards at each simulation at rewards vector for further

plotting. (code block 11)

hyperparameters
alpha = 0.3
gamma = 0.9
epsilon = 0.90

python

What you may notice from those results:

We are very close to achieving the goal of getting 195 cumulative rewards over 100+ consecutive

runs of the simulation, or we may have actually achieved it! Even if we get smaller numbers, we

still do not know, because we average over 5000 runs, and only 100 runs is required in the formal

criteria.

def probs(v,eps=1e-4):
 v = v-v.min()+eps
 v = v/v.sum()
 return v

Qmax = 0
cum_rewards = []
rewards = []
for epoch in range(100000):
 obs = env.reset()
 done = False
 cum_reward=0
 # == do the simulation ==
 while not done:
 s = discretize(obs)
 if random.random()<epsilon:
 # exploitation - chose the action according to Q-Table probabil
 v = probs(np.array(qvalues(s)))
 a = random.choices(actions,weights=v)[0]
 else:
 # exploration - randomly chose the action
 a = np.random.randint(env.action_space.n)

 obs, rew, done, info = env.step(a)
 cum_reward+=rew
 ns = discretize(obs)
 Q[(s,a)] = (1 - alpha) * Q.get((s,a),0) + alpha * (rew + gamma * ma
 cum_rewards.append(cum_reward)
 rewards.append(cum_reward)
 # == Periodically print results and calculate average reward ==
 if epoch%5000==0:
 print(f"{epoch}: {np.average(cum_rewards)}, alpha={alpha}, epsilon=
 if np.average(cum_rewards) > Qmax:
 Qmax = np.average(cum_rewards)
 Qbest = Q
 cum_rewards=[]

python

Sometimes the reward start to drop, which means that we can "destroy" already learnt values in

the Q-Table with the ones that make the situation worse.

This is more clearly visible if we plot training progress.

Plotting Training Progress

During training, we have collected the cumulative reward value at each of the iterations into

rewards vector. Here is how it looks when we plot it against the iteration number:

From this graph, it is not possible to tell anything, because due to the nature of stochastic training

process the length of training sessions varies greatly. To make more sense of this graph, we can

calculate the running average over a series of experiments, let's say 100. This can be done

conveniently using np.convolve : (code block 12)

plt.plot(rewards)
python

def running_average(x,window):
 return np.convolve(x,np.ones(window)/window,mode='valid')

plt.plot(running_average(rewards,100))

python

Varying hyperparameters

To make learning more stable, it makes sense to adjust some of our hyperparameters during training.

In particular:

For learning rate, alpha , we may start with values close to 1, and then keep decreasing the

parameter. With time, we will be getting good probability values in the Q-Table, and thus we

should be adjusting them slightly, and not overwriting completely with new values.

We may want to increase the epsilon slowly, in order to explore less and exploit more. It

probably makes sense to start with lower value of epsilon , and move up to almost 1.

Task 1: Play with hyperparameter values and see if you can achieve higher cumulative reward.

Are you getting above 195?

Task 2: To formally solve the problem, you need to get 195 average reward across 100

consecutive runs. Measure that during training and make sure that you have formally solved

the problem!

Seeing the result in action

It would be interesting to actually see how the trained model behaves. Let's run the simulation and

follow the same action selection strategy as during training, sampling according to the probability

distribution in Q-Table: (code block 13)

You should see something like this:

🚀Challenge

Task 3: Here, we were using the final copy of Q-Table, which may not be the best one.

Remember that we have stored the best-performing Q-Table into Qbest variable! Try the

obs = env.reset()
done = False
while not done:
 s = discretize(obs)
 env.render()
 v = probs(np.array(qvalues(s)))
 a = random.choices(actions,weights=v)[0]
 obs,_,done,_ = env.step(a)
env.close()

python

same example with the best-performing Q-Table by copying Qbest over to Q and see if

you notice the difference.

Task 4: Here we were not selecting the best action on each step, but rather sampling with

corresponding probability distribution. Would it make more sense to always select the best

action, with the highest Q-Table value? This can be done by using np.argmax function to

find out the action number corresponding to highers Q-Table value. Implement this strategy

and see if it improves the balancing.

Post-lecture quiz

Assignment:Train a Mountain Car

Conclusion

We have now learned how to train agents to achieve good results just by providing them a reward

function that defines the desired state of the game, and by giving them an opportunity to intelligently

explore the search space. We have successfully applied the Q-Learning algorithm in the cases of

discrete and continuous environments, but with discrete actions.

It's important to also study situations where action state is also continuous, and when observation

space is much more complex, such as the image from the Atari game screen. In those problems we

often need to use more powerful machine learning techniques, such as neural networks, in order to

achieve good results. Those more advanced topics are the subject of our forthcoming more

advanced AI course.

Machine learning in the real world - a

postscript

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/48/

In this curriculum, you have learned many ways to prepare data for training and create machine

learning models. You built a series of classic regression, clustering, classification, natural language

processing, and time series models. Congratulations! Now, you might be wondering what it's all for...

what are the real world applications for these models?

While a lot of interest in industry has been garnered by AI, which usually leverages deep learning,

there are still valuable applications for classical machine learning models. You might even use some

of these applications today! In this lesson, you'll explore how eight different industries and subject-

matter domains use these types of models to make their applications more performant, reliable,

intelligent, and valuable to users.

Pre-lecture quiz

💰 Finance

Credit card fraud detection

We learned about k-means clustering earlier in the course, but how can it be used to solve problems

related to credit card fraud?

K-means clustering comes in handy during a credit card fraud detection technique called outlier

detection. Outliers, or deviations in observations about a set of data, can tell us if a credit card is

being used in a normal capacity or if something unusual is going on. As shown in the paper linked

below, you can sort credit card data using a k-means clustering algorithm and assign each

transaction to a cluster based on how much of an outlier it appears to be. Then, you can evaluate the

riskiest clusters for fraudulent versus legitimate transactions.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf

Wealth management

In wealth management, an individual or firm handles investments on behalf of their clients. Their job is

to sustain and grow wealth in the long-term, so it is essential to choose investments that perform

well.

One way to evaluate how a particular investment performs is through statistical regression. Linear

regression is a valuable tool for understanding how a fund performs relative to some benchmark. We

can also deduce whether or not the results of the regression are statistically significant, or how much

they would affect a client's investments. You could even further expand your analysis using multiple

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/49/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf

regression, where additional risk factors can be taken into account. For an example of how this would

work for a specific fund, check out the paper below on evaluating fund performance using regression.

http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/

🎓 Education

Predicting student behavior

Coursera, an online open course provider, has a great tech blog where they discuss many

engineering decisions. In this case study, they plotted a regression line to try to explore any

correlation between a low NPS (Net Promoter Score) rating and course retention or drop-off.

https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-

quality-on-learner-retention-31f956bd592a

Mitigating bias

Grammarly, a writing assistant that checks for spelling and grammar errors, uses sophisticated

natural language processing systems throughout its products. They published an interesting case

study in their tech blog about how they dealt with gender bias in machine learning, which you learned

about in our introductory fairness lesson.

https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/

👜 Retail

Personalizing the customer journey

At Wayfair, a company that sells home goods like furniture, helping customers find the right products

for their taste and needs is paramount. In this article, engineers from the company describe how they

use ML and NLP to "surface the right results for customers". Notably, their Query Intent Engine has

been built to use entity extraction, classifier training, asset and opinion extraction, and sentiment

tagging on customer reviews. This is a classic use case of how NLP works in online retail.

https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-

language-processing-to-empower-search

http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/
https://coursera.com/
https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a
https://grammarly.com/
https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/
https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search

Inventory management

Innovative, nimble companies like StitchFix, a box service that ships clothing to consumers, rely

heavily on ML for recommendations and inventory management. Their styling teams work together

with their merchandising teams, in fact: "one of our data scientists tinkered with a genetic algorithm

and applied it to apparel to predict what would be a successful piece of clothing that doesn't exist

today. We brought that to the merchandise team and now they can use that as a tool."

https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-

styling/

🏥 Health Care

Managing clinical trials

Toxicity in clinical trials is a major concern to drug makers. How much toxicity is tolerable? In this

study, analyzing various clinical trial methods led to the development of a new approach for

predicting the odds of clinical trial outcomes. Specifically, they were able to use random forest to

produce a classifier that is able to distinguish between groups of drugs.

https://www.sciencedirect.com/science/article/pii/S2451945616302914

Hospital readmission management

Hospital care is costly, especially when patients have to be readmitted. This paper discusses a

company that uses ML to predict readmission potential using clustering algorithms. These clusters

help analysts to "discover groups of readmissions that may share a common cause".

https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-

machine-learning

Disease management

The recent pandemic has shone a bright light on the ways that machine learning can aid in stopping

the spread of disease. In this article, you'll recognize the use of ARIMA, logistic curves, linear

regression, and SARIMA. "This work is an attempt to calculate the rate of spread of this virus and

thus to predict the deaths, recoveries, and confirmed cases, so that it may help us to prepare better

and survive."

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/

https://stitchfix.com/
https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/
https://www.sciencedirect.com/science/article/pii/S2451945616302914
https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/

🌲 Ecology and Green Tech

Forest management

You learned about Reinforcement Learning in previous lessons. It can be very useful when trying to

predict patterns in nature. In particular, it can be used to track ecological problems like forest fires

and the spread of invasive species. In Canada, a group of researchers used Reinforcement Learning

to build forest wildfire dynamics models from satellite images. Using an innovative "spatially

spreading process (SSP)", they envisioned a forest fire as "the agent at any cell in the landscape."

"The set of actions the fire can take from a location at any point in time includes spreading north,

south, east, or west or not spreading.

This approach inverts the usual RL setup since the dynamics of the corresponding Markov Decision

Process (MDP) is a known function for immediate wildfire spread." Read more about the classic

algorithms used by this group at the link below.

https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full

Motion sensing of animals

While deep learning has created a revolution in visually-tracking animal movements (you can build

your own polar bear tracker here), classic ML still has a place in this task.

Sensors to track movements of farm animals and IoT makes use of this type of visual processing, but

more basic ML techniques are useful to preprocess data. For example, in this paper, sheep postures

were monitored and analyzed using various classifier algorithms. You might recognize the ROC curve

on page 335.

https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf

⚡ Energy Management

In our lessons on time series forecasting, we invoked the concept of smart parking meters to

generate revenue for a town based on understanding supply and demand. This article discusses in

detail how clustering, regression and time series forecasting combined to help predict future energy

use in Ireland, based off of smart metering.

https://www-cdn.knime.com/sites/default/files/inline-

images/knime_bigdata_energy_timeseries_whitepaper.pdf

https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full
https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-15963-cxa
https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf
https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf

💼 Insurance

Volatility Management

MetLife, a life insurance provider, is forthcoming with the way they analyze and mitigate volatility in

their financial models. In this article you'll notice binary and ordinal classification visualizations. You'll

also discover forecasting visualizations.

https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-

topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf

🎨 Arts, Culture, and Literature

Fake news detection

Detecting fake news has become a game of cat and mouse in today's media. In this article,

researchers suggest that a system combining several of the ML techniques we have studied can be

tested and the best model deployed: "This system is based on natural language processing to extract

features from the data and then these features are used for the training of machine learning

classifiers such as Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic

Gradient Descent (SGD), and Logistic Regression(LR)."

https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf

This article shows how combining different ML domains can produce interesting results that can help

stop fake news from spreading and creating real damage; in this case, the impetus was the spread of

rumors about COVID treatments that incited mob violence.

Museum ML

Museums are at the cusp of an AI revolution in which cataloging and digitizing collections and finding

links between artifacts is becoming easier as technology advances. Projects such as In Codice Ratio

are helping unlock the mysteries of inaccessible collections such as the Vatican Archives. But, the

business aspect of museums benefits from ML models as well.

For example, the Art Institute of Chicago built models to predict what audiences are interested in and

when they will attend expositions. The goals is to create individualized and optimized visitor

experiences each time the user visit the museum. "During fiscal 2017, the model predicted

https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf
https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.

attendance and admissions within 1 percent of accuracy, says Andrew Simnick, senior vice president

at the Art Institute."

https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-

uses-data-to-make-exhibit-choices

🏷 Marketing

Customer segmentation

The most effective marketing strategies target customers in different ways based on various

groupings. In this article, the uses of Clustering algorithms are discussed to support differentiated

marketing. Differentiated marketing helps companies improve brand recognition, reach more

customers, and make more money.

https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/

🚀 Challenge

Identify another sector that benefits from some of the techniques you learned in this curriculum, and

discover how it uses ML.

Post-lecture quiz

Review & Self Study

The Wayfair data science team has several interesting videos on how they use ML at their company.

It's worth taking a look!

Assignment

A ML scavenger hunt

https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices
https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/50/
https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos

