# ML 모델 사용하여 Web App 만들기 이 강의에서, 이 세상에 없었던 데이터셋에 대하여 ML 모델을 훈련할 예정입니다: _UFO sightings over the past century_, sourced from NUFORC's database. 다음을 배우게 됩니다: - 훈련된 모델을 'pickle'하는 방식 - Flask 앱에서 모델을 사용하는 방식 계속 노트북으로 데이터를 정리하고 모델을 훈련하지만, 웹 앱에서 'in the wild' 모델을 사용하면 단계를 넘어서 발전할 수 있습니다. 이러면, Flask로 웹 앱을 만들어야 합니다. ## [강의 전 퀴즈](https://white-water-09ec41f0f.azurestaticapps.net/quiz/17/) ## 앱 만들기 머신러닝 모델로 웹 앱을 만드는 여러 방식이 존재합니다. 웹 구조는 모델을 훈련하는 방식에 영향을 줄 수 있습니다. 데이터 사이언스 그룹이 앱에서 사용하고 싶은 훈련된 모델을 가지고 비지니스에서 일한다고 상상해봅니다. ### 고려할 사항 많은 질문들을 물어볼 필요가 있습니다: - **웹 앱 혹은 모바일 앱인가요?** 만약 모바일 앱을 만들거나 IoT 컨텍스트에서 모델을 사용해야 되는 경우, [TensorFlow Lite](https://www.tensorflow.org/lite/)로 Android 또는 iOS 앱에서 모델을 사용할 수 있습니다. - **모델은 어디에 있나요?** 클라우드 또는 로컬 중 어디인가요? - **오프라인 지원합니다.** 앱이 오프라인으로 동작하나요? - **모델을 훈련시킬 때 사용하는 기술은 무엇인가요?** 선택된 기술은 사용할 도구에 영향을 줄 수 있습니다. - **Tensor flow 사용합니다.** 만약 TensorFlow로 모델을 훈련한다면, 예시로, 에코 시스템은 [TensorFlow.js](https://www.tensorflow.org/js/)로 웹 앱에서 사용할 TensorFlow 모델을 변환해주는 기능을 제공합니다. - **PyTorch 사용합니다.** 만약 [PyTorch](https://pytorch.org/) 같은 라이브러리로 모델을 만들면, [Onnx Runtime](https://www.onnxruntime.ai/)으로 할 수 있는 JavaScript 웹 앱에서 사용하기 위한 [ONNX](https://onnx.ai/) (Open Neural Network Exchange) 포맷으로 내보낼 옵션이 존재합니다. 이 옵션은 Scikit-learn-trained 모델로 이후 강의에서 알아볼 예정입니다. - **Lobe.ai 또는 Azure Custom vision 사용합니다.** 만약 [Lobe.ai](https://lobe.ai/) 또는 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) 같은 ML SaaS (Software as a Service) 시스템으로 모델을 훈련하게 된다면, 이 소프트웨어 타입은 온라인 애플리케이션이 클라우드에서 쿼리된 bespoke API를 만드는 것도 포함해서 많은 플랫폼의 모델들을 내보낼 방식을 제공합니다. 또 웹 브라우저에서 모델로만 훈련할 수 있는 모든 Flask 웹 앱을 만들 수 있습니다. JavaScript 컨텍스트에서 TensorFlow.js로 마무리 지을 수 있습니다. 목적을 위해서, Python-기반의 노트북으로 작성했기 때문에, 노트북에서 훈련된 모델을 Python-제작한 웹 앱에서 읽을 수 있는 포맷으로 내보낼 때 필요한 단계를 알아봅니다. ## 도구 작업에서, 2가지 도구가 필요합니다: Flask 와 Pickle은, 둘 다 Python에서 작동합니다. ✅ [Flask](https://palletsprojects.com/p/flask/)는 무엇일까요? 작성자가 'micro-framework'로 정의한, Flask는 Python으로 웹 프레임워크의 기본적인 기능과 웹 페이지를 만드는 템플릿 엔진을 제공합니다. [this Learn module](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa)을 보고 Flask로 만드는 것을 연습합니다. ✅ [Pickle](https://docs.python.org/3/library/pickle.html)은 무엇일까요? Pickle 🥒은 Python 객체 구조를 serializes와 de-serializes하는 Python 모듈입니다. 모델을 'pickle'하게 되면, 웹에서 쓰기 위해서 serialize 또는 flatten합니다. 주의합시다: pickle은 원래 안전하지 않아서, 파일을 'un-pickle'한다고 나오면 조심합니다. pickled 파일은 접미사 `.pkl`로 있습니다. ## 연습 - 데이터 정리하기 [NUFORC](https://nuforc.org) (The National UFO Reporting Center)에서 모아둔, 80,000 UFO 목격 데이터를 이 강의에서 사용합니다. 데이터에 UFO 목격 관련한 몇 흥미로운 설명이 있습니다, 예시로 들어봅니다: - **긴 예시를 설명합니다.** "A man emerges from a beam of light that shines on a grassy field at night and he runs towards the Texas Instruments parking lot". - **짧은 예시를 설명합니다.** "the lights chased us". [ufos.csv](.././data/ufos.csv) 스프레드시트에는 목격된 `city`, `state` 와 `country`, 오브젝트의 `shape` 와 `latitude` 및 `longitude` 열이 포함되어 있습니다. 강의에 있는 빈 [notebook](../notebook.ipynb)에서 진행합니다: 1. 이전 강의에서 했던 것처럼 `pandas`, `matplotlib`, 와 `numpy`를 import하고 ufos 스프레드시트도 import합니다. 샘플 데이터셋을 볼 수 있습니다: ```python import pandas as pd import numpy as np ufos = pd.read_csv('./data/ufos.csv') ufos.head() ``` 1. ufos 데이터를 새로운 제목의 작은 데이터프레임으로 변환합니다. `Country` 필드가 유니크 값인지 확인합니다. ```python ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) ufos.Country.unique() ``` 1. 지금부터, 모든 null 값을 드랍하고 1-60초 사이 목격만 가져와서 처리할 데이터의 수량을 줄일 수 있습니다: ```python ufos.dropna(inplace=True) ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] ufos.info() ``` 1. Scikit-learn의 `LabelEncoder` 라이브러리를 Import해서 국가의 텍스트 값을 숫자로 변환합니다: ✅ LabelEncoder는 데이터를 알파벳 순서로 인코드합니다. ```python from sklearn.preprocessing import LabelEncoder ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) ufos.head() ``` 데이터는 이렇게 보일 것입니다: ```output Seconds Country Latitude Longitude 2 20.0 3 53.200000 -2.916667 3 20.0 4 28.978333 -96.645833 14 30.0 4 35.823889 -80.253611 23 60.0 4 45.582778 -122.352222 24 3.0 3 51.783333 -0.783333 ``` ## 연습 - 모델 만들기 지금부터 데이터를 훈련하고 테스트할 그룹으로 나누어서 모델을 훈련할 준비가 되었습니다. 1. X 백터로 훈련할 3가지 features를 선택하면, y 백터는 `Country`로 됩니다. `Seconds`, `Latitude` 와 `Longitude`를 입력하면 국가 id로 반환되기를 원합니다. ```python from sklearn.model_selection import train_test_split Selected_features = ['Seconds','Latitude','Longitude'] X = ufos[Selected_features] y = ufos['Country'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ``` 1. logistic regression을 사용해서 모델을 훈련합니다: ```python from sklearn.metrics import accuracy_score, classification_report from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) print(classification_report(y_test, predictions)) print('Predicted labels: ', predictions) print('Accuracy: ', accuracy_score(y_test, predictions)) ``` 당연하게, `Country` 와 `Latitude/Longitude`가 상관 관계있어서, 정확도 **(around 95%)** 가 나쁘지 않습니다. 만든 모델은 `Latitude` 와 `Longitude`에서 `Country`를 알 수 있어야 하므로 매우 혁신적이지 않지만, 정리하면서, 뽑은 원본 데이터에서 훈련을 해보고 웹 앱에서 모델을 쓰기에 좋은 연습입니다. ## 연습 - 모델 'pickle'하기 모델을 _pickle_ 할 시간이 되었습니다! 코드 몇 줄로 할 수 있습니다. _pickled_ 되면, pickled 모델을 불러와서 초, 위도와 경도 값이 포함된 샘플 데이터 배열을 대상으로 테스트합니다. ```python import pickle model_filename = 'ufo-model.pkl' pickle.dump(model, open(model_filename,'wb')) model = pickle.load(open('ufo-model.pkl','rb')) print(model.predict([[50,44,-12]])) ``` 모델은 영국 국가 코드인, **'3'** 이 반환됩니다. Wild! 👽 ## 연습 - Flask 앱 만들기 지금부터 Flask 앱을 만들어서 모델을 부르고 비슷한 결과를 반환하지만, 시각적으로 만족할 방식으로도 가능합니다. 1. _ufo-model.pkl_ 파일과 _notebook.ipynb_ 파일 옆에 **web-app** 이라고 불리는 폴더를 만들면서 시작합니다. 1. 폴더에서 3가지 폴더를 만듭니다: **static**, 내부에 **css** 폴더가 있으며, **templates`** 도 있습니다. 지금부터 다음 파일과 디렉토리들이 있어야 합니다: ```output web-app/ static/ css/ templates/ notebook.ipynb ufo-model.pkl ``` ✅ 완성된 앱을 보려면 solution 폴더를 참조합니다 1. _web-app_ 폴더에서 만들 첫 파일은 **requirements.txt** 파일입니다. JavaScript 앱의 _package.json_ 처럼, 앱에 필요한 의존성을 리스트한 파일입니다. **requirements.txt** 에 해당 라인을 추가합니다: ```text scikit-learn pandas numpy flask ``` 1. 지금부터, _web-app_ 으로 이동해서 파일을 실행합니다: ```bash cd web-app ``` 1. 터미널에서 `pip install`을 타이핑해서, _requirements.txt_ 에 나열된 라이브러리를 설치합니다: ```bash pip install -r requirements.txt ``` 1. 지금부터, 앱을 완성하기 위해서 3가지 파일을 더 만들 준비를 했습니다: 1. 최상단에 **app.py**를 만듭니다. 2. _templates_ 디렉토리에 **index.html**을 만듭니다. 3. _static/css_ 디렉토리에 **styles.css**를 만듭니다. 1. 몇 스타일로 _styles.css_ 파일을 만듭니다: ```css body { width: 100%; height: 100%; font-family: 'Helvetica'; background: black; color: #fff; text-align: center; letter-spacing: 1.4px; font-size: 30px; } input { min-width: 150px; } .grid { width: 300px; border: 1px solid #2d2d2d; display: grid; justify-content: center; margin: 20px auto; } .box { color: #fff; background: #2d2d2d; padding: 12px; display: inline-block; } ``` 1. 다음으로 _index.html_ 파일을 만듭니다: ```html
According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?
{{ prediction_text }}