[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) [![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) [![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) [![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) [![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) [![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) [![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) ### 🌐 āĻŦāĻšā§ āĻ­āĻžāώāĻžāϰ āϏāĻŽāĻ°ā§āĻĨāύ #### GitHub Action āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āϏāĻŽāĻ°ā§āĻĨāĻŋāϤ (āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧ āĻāĻŦāĻ‚ āϏāĻ°ā§āĻŦāĻĻāĻž āφāĻĒāĻĄā§‡āĻŸā§‡āĻĄ) [French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](./README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) #### āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻŽāĻŋāωāύāĻŋāϟāĻŋāϤ⧇ āϝ⧋āĻ— āĻĻāĻŋāύ [![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://aka.ms/ml4beginners/discord) āφāĻŽāĻžāĻĻ⧇āϰ Discord-āĻ AI āĻļāĻŋāϖ⧁āύ āϏāĻŋāϰāĻŋāϜ āϚāϞāϛ⧇āĨ¤ āφāϰāĻ“ āϜāĻžāύ⧁āύ āĻāĻŦāĻ‚ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĨ⧇ āϝ⧋āĻ— āĻĻāĻŋāύ [Learn with AI Series](https://aka.ms/learnwithai/discord) ā§§ā§Ž - ā§Šā§Ļ āϏ⧇āĻĒā§āĻŸā§‡āĻŽā§āĻŦāϰ, ⧍ā§Ļ⧍ā§ĢāĨ¤ āĻāĻ–āĻžāύ⧇ āφāĻĒāύāĻŋ GitHub Copilot āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻĄā§‡āϟāĻž āϏāĻžāϝāĻŧ⧇āĻ¨ā§āϏ⧇āϰ āϟāĻŋāĻĒāϏ āĻāĻŦāĻ‚ āĻ•ā§ŒāĻļāϞ āĻļāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŦ⧇āύāĨ¤ ![Learn with AI series](../../translated_images/3.9b58fd8d6c373c20c588c5070c4948a826ab074426c28ceb5889641294373dfc.bn.png) # āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āĻĻ⧇āϰ āϜāĻ¨ā§āϝ āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ - āĻāĻ•āϟāĻŋ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽ > 🌍 āĻŦāĻŋāĻļā§āĻŦ āϏāĻ‚āĻ¸ā§āĻ•ā§ƒāϤāĻŋāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻ…āĻ¨ā§āĻŦ⧇āώāĻŖ āĻ•āϰāϤ⧇ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĨ⧇ āĻŦāĻŋāĻļā§āĻŦ āĻ­ā§āϰāĻŽāĻŖ āĻ•āϰ⧁āύ 🌍 Microsoft-āĻāϰ Cloud Advocates āφāĻĒāύāĻžāĻĻ⧇āϰ āϜāĻ¨ā§āϝ ⧧⧍ āϏāĻĒā§āϤāĻžāĻšā§‡āϰ, ⧍ā§ŦāϟāĻŋ āĻĒāĻžāϠ⧇āϰ āĻāĻ•āϟāĻŋ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽ āύāĻŋāϝāĻŧ⧇ āĻāϏ⧇āϛ⧇ āϝāĻž āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ **āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚** āύāĻŋāϝāĻŧ⧇āĨ¤ āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽā§‡, āφāĻĒāύāĻŋ **āĻ•ā§āϞāĻžāϏāĻŋāĻ• āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚** āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āĻļāĻŋāĻ–āĻŦ⧇āύ, āϝ⧇āĻ–āĻžāύ⧇ āĻĒā§āϰāϧāĻžāύāϤ Scikit-learn āϞāĻžāχāĻŦā§āϰ⧇āϰāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āĻšāĻŦ⧇ āĻāĻŦāĻ‚ āĻĄāĻŋāĻĒ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻāĻĄāĻŧāĻŋāϝāĻŧ⧇ āϚāϞāĻž āĻšāĻŦ⧇, āϝāĻž āφāĻŽāĻžāĻĻ⧇āϰ [AI for Beginners' āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽā§‡](https://aka.ms/ai4beginners) āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āϰāϝāĻŧ⧇āϛ⧇āĨ¤ āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽāϟāĻŋ āφāĻŽāĻžāĻĻ⧇āϰ ['Data Science for Beginners' āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽā§‡āϰ](https://aka.ms/ds4beginners) āϏāĻžāĻĨ⧇ āĻŽāĻŋāϞāĻŋāϝāĻŧ⧇ āĻĒāĻĄāĻŧ⧁āύāĨ¤ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĨ⧇ āĻŦāĻŋāĻļā§āĻŦ āĻ­ā§āϰāĻŽāĻŖ āĻ•āϰ⧁āύ āĻāĻŦāĻ‚ āĻāχ āĻ•ā§āϞāĻžāϏāĻŋāĻ• āĻ•ā§ŒāĻļāϞāϗ⧁āϞāĻŋ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻ…āĻžā§āϚāϞ⧇āϰ āĻĄā§‡āϟāĻžāϰ āωāĻĒāϰ āĻĒā§āϰāϝāĻŧā§‹āĻ— āĻ•āϰ⧁āύāĨ¤ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻĒāĻžāϠ⧇ āϰāϝāĻŧ⧇āϛ⧇ āĻĒā§āϰāĻžāĻ•-āĻĒāĻžāĻ  āĻāĻŦāĻ‚ āĻĒāϰ-āĻĒāĻžāĻ  āϕ⧁āχāϜ, āϞāĻŋāĻ–āĻŋāϤ āύāĻŋāĻ°ā§āĻĻ⧇āĻļāύāĻž, āϏāĻŽāĻžāϧāĻžāύ, āĻ…ā§āϝāĻžāϏāĻžāχāύāĻŽā§‡āĻ¨ā§āϟ āĻāĻŦāĻ‚ āφāϰāĻ“ āĻ…āύ⧇āĻ• āĻ•āĻŋāϛ⧁āĨ¤ āφāĻŽāĻžāĻĻ⧇āϰ āĻĒā§āϰāĻ•āĻ˛ā§āĻĒ-āĻ­āĻŋāĻ¤ā§āϤāĻŋāĻ• āĻļāĻŋāĻ•ā§āώāĻžāĻĻāĻžāύ āĻĒāĻĻā§āϧāϤāĻŋ āφāĻĒāύāĻžāϕ⧇ āĻļ⧇āĻ–āĻžāϰ āϏāĻŽāϝāĻŧ āϤ⧈āϰāĻŋ āĻ•āϰāϤ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰ⧇, āϝāĻž āύāϤ⧁āύ āĻĻāĻ•ā§āώāϤāĻž āĻ…āĻ°ā§āϜāύ⧇āϰ āĻāĻ•āϟāĻŋ āĻĒā§āϰāĻŽāĻžāĻŖāĻŋāϤ āωāĻĒāĻžāϝāĻŧāĨ¤ **âœī¸ āφāĻŽāĻžāĻĻ⧇āϰ āϞ⧇āĻ–āĻ•āĻĻ⧇āϰ āĻĒā§āϰāϤāĻŋ āφāĻ¨ā§āϤāϰāĻŋāĻ• āϧāĻ¨ā§āϝāĻŦāĻžāĻĻ** Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu āĻāĻŦāĻ‚ Amy Boyd **🎨 āφāĻŽāĻžāĻĻ⧇āϰ āϚāĻŋāĻ¤ā§āϰāĻļāĻŋāĻ˛ā§āĻĒā§€āĻĻ⧇āϰ āĻĒā§āϰāϤāĻŋ āϧāĻ¨ā§āϝāĻŦāĻžāĻĻ** Tomomi Imura, Dasani Madipalli, āĻāĻŦāĻ‚ Jen Looper **🙏 Microsoft Student Ambassador āϞ⧇āĻ–āĻ•, āĻĒāĻ°ā§āϝāĻžāϞ⧋āϚāĻ• āĻāĻŦāĻ‚ āĻŦāĻŋāώāϝāĻŧāĻŦāĻ¸ā§āϤ⧁ āĻ…āĻŦāĻĻāĻžāύāĻ•āĻžāϰ⧀āĻĻ⧇āϰ āĻĒā§āϰāϤāĻŋ āĻŦāĻŋāĻļ⧇āώ āϧāĻ¨ā§āϝāĻŦāĻžāĻĻ**, āĻŦāĻŋāĻļ⧇āώ āĻ•āϰ⧇ Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, āĻāĻŦāĻ‚ Snigdha Agarwal **🤩 Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi, āĻāĻŦāĻ‚ Vidushi Gupta-āϕ⧇ āφāĻŽāĻžāĻĻ⧇āϰ R āĻĒāĻžāϠ⧇āϰ āϜāĻ¨ā§āϝ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻ•ā§ƒāϤāĻœā§āĻžāϤāĻž!** # āĻļ⧁āϰ⧁ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ āĻāχ āϧāĻžāĻĒāϗ⧁āϞāĻŋ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧁āύ: 1. **āϰāĻŋāĻĒā§‹āϜāĻŋāϟāϰāĻŋ āĻĢāĻ°ā§āĻ• āĻ•āϰ⧁āύ**: āĻāχ āĻĒ⧃āĻˇā§āĻ āĻžāϰ āωāĻĒāϰ⧇āϰ āĻĄāĻžāύ āϕ⧋āϪ⧇ "Fork" āĻŦā§‹āϤāĻžāĻŽā§‡ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤ 2. **āϰāĻŋāĻĒā§‹āϜāĻŋāϟāϰāĻŋ āĻ•ā§āϞ⧋āύ āĻ•āϰ⧁āύ**: `git clone https://github.com/microsoft/ML-For-Beginners.git` > [āĻāχ āϕ⧋āĻ°ā§āϏ⧇āϰ āϜāĻ¨ā§āϝ āϏāĻŽāĻ¸ā§āϤ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āϏāĻŽā§āĻĒāĻĻ āφāĻŽāĻžāĻĻ⧇āϰ Microsoft Learn āϏāĻ‚āĻ—ā§āϰāĻšā§‡ āϖ⧁āρāϜ⧁āύ](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) **[āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āϰāĻž](https://aka.ms/student-page)**, āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽāϟāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϤ⧇, āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āϰāĻŋāĻĒā§‹āϜāĻŋāϟāϰāĻŋ āφāĻĒāύāĻžāϰ āύāĻŋāϜāĻ¸ā§āĻŦ GitHub āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡ āĻĢāĻ°ā§āĻ• āĻ•āϰ⧁āύ āĻāĻŦāĻ‚ āĻāĻ•āĻž āĻŦāĻž āĻāĻ•āϟāĻŋ āĻĻāϞ⧇āϰ āϏāĻžāĻĨ⧇ āĻ…āύ⧁āĻļā§€āϞāύāϗ⧁āϞāĻŋ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āϰ⧁āύ: - āĻĒā§āϰāĻžāĻ•-āϞ⧇āĻ•āϚāĻžāϰ āϕ⧁āχāϜ āĻĻāĻŋāϝāĻŧ⧇ āĻļ⧁āϰ⧁ āĻ•āϰ⧁āύāĨ¤ - āϞ⧇āĻ•āϚāĻžāϰ āĻĒāĻĄāĻŧ⧁āύ āĻāĻŦāĻ‚ āĻ•āĻžāĻ°ā§āϝāĻ•ā§āϰāĻŽ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āϰ⧁āύ, āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻœā§āĻžāĻžāύ āϝāĻžāϚāĻžāχāϝāĻŧ⧇āϰ āϏāĻŽāϝāĻŧ āĻĨāĻžāĻŽā§āύ āĻāĻŦāĻ‚ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰ⧁āύāĨ¤ - āĻĒāĻžāĻ āϗ⧁āϞāĻŋ āĻŦ⧁āĻā§‡ āĻĒā§āϰāĻ•āĻ˛ā§āĻĒāϗ⧁āϞāĻŋ āϤ⧈āϰāĻŋ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧁āύ, āϏāĻŽāĻžāϧāĻžāύ āϕ⧋āĻĄ āϚāĻžāϞāĻžāύ⧋āϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤ⧇; āϤāĻŦ⧇ āϏ⧇āχ āϕ⧋āĻĄāϟāĻŋ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻĒā§āϰāĻ•āĻ˛ā§āĻĒ-āĻ­āĻŋāĻ¤ā§āϤāĻŋāĻ• āĻĒāĻžāϠ⧇āϰ `/solution` āĻĢā§‹āĻ˛ā§āĻĄāĻžāϰ⧇ āωāĻĒāϞāĻŦā§āϧāĨ¤ - āĻĒāϰ-āϞ⧇āĻ•āϚāĻžāϰ āϕ⧁āχāϜ āύāĻŋāύāĨ¤ - āĻšā§āϝāĻžāϞ⧇āĻžā§āϜ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āϰ⧁āύāĨ¤ - āĻ…ā§āϝāĻžāϏāĻžāχāύāĻŽā§‡āĻ¨ā§āϟ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āϰ⧁āύāĨ¤ - āĻāĻ•āϟāĻŋ āĻĒāĻžāĻ  āĻ—ā§‹āĻˇā§āĻ ā§€ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āϰāĻžāϰ āĻĒāϰ⧇, [Discussion Board](https://github.com/microsoft/ML-For-Beginners/discussions) āĻĒāϰāĻŋāĻĻāĻ°ā§āĻļāύ āĻ•āϰ⧁āύ āĻāĻŦāĻ‚ "āĻļāĻŋāϖ⧁āύ" PAT āϰ⧁āĻŦā§āϰāĻŋāĻ• āĻĒā§‚āϰāĻŖ āĻ•āϰ⧇āĨ¤ āĻāĻ•āϟāĻŋ 'PAT' āĻšāϞ āĻāĻ•āϟāĻŋ Progress Assessment Tool āϝāĻž āφāĻĒāύāĻŋ āφāĻĒāύāĻžāϰ āĻļ⧇āĻ–āĻžāϰ āωāĻ¨ā§āύāϤ āĻ•āϰāϤ⧇ āĻĒā§‚āϰāĻŖ āĻ•āϰ⧇āύāĨ¤ āφāĻĒāύāĻŋ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ PAT-āĻ āĻĒā§āϰāϤāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āϜāĻžāύāĻžāϤ⧇ āĻĒāĻžāϰ⧇āύ āϝāĻžāϤ⧇ āφāĻŽāϰāĻž āĻāĻ•āϏāĻžāĻĨ⧇ āĻļāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋāĨ¤ > āφāϰāĻ“ āĻ…āĻ§ā§āϝāϝāĻŧāύ⧇āϰ āϜāĻ¨ā§āϝ, āφāĻŽāϰāĻž āĻāχ [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott) āĻŽāĻĄāĻŋāωāϞ āĻāĻŦāĻ‚ āĻļ⧇āĻ–āĻžāϰ āĻĒāĻĨāϗ⧁āϞāĻŋ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰāĻžāϰ āϏ⧁āĻĒāĻžāϰāĻŋāĻļ āĻ•āϰāĻŋāĨ¤ **āĻļāĻŋāĻ•ā§āώāĻ•āĻ—āĻŖ**, āφāĻŽāϰāĻž āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽāϟāĻŋ āϕ⧀āĻ­āĻžāĻŦ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻŦ⧇āύ āϤāĻžāϰ āϜāĻ¨ā§āϝ [āĻ•āĻŋāϛ⧁ āĻĒāϰāĻžāĻŽāĻ°ā§āĻļ](for-teachers.md) āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āĻ•āϰ⧇āĻ›āĻŋāĨ¤ --- ## āĻ­āĻŋāĻĄāĻŋāĻ“ āĻ“āϝāĻŧāĻžāĻ•āĻĨā§āϰ⧁ āĻ•āĻŋāϛ⧁ āĻĒāĻžāĻ  āϏāĻ‚āĻ•ā§āώāĻŋāĻĒā§āϤ āĻ­āĻŋāĻĄāĻŋāĻ“ āφāĻ•āĻžāϰ⧇ āωāĻĒāϞāĻŦā§āϧāĨ¤ āφāĻĒāύāĻŋ āĻāχ āĻ­āĻŋāĻĄāĻŋāĻ“āϗ⧁āϞāĻŋ āĻĒāĻžāϠ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻŦāĻž [Microsoft Developer YouTube āĻšā§āϝāĻžāύ⧇āϞ⧇ ML for Beginners āĻĒā§āϞ⧇āϞāĻŋāĻ¸ā§āĻŸā§‡](https://aka.ms/ml-beginners-videos) āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤ āύāĻŋāĻšā§‡āϰ āĻ›āĻŦāĻŋāϤ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤ [![ML for beginners banner](../../translated_images/ml-for-beginners-video-banner.63f694a100034bc6251134294459696e070a3a9a04632e9fe6a24aa0de4a7384.bn.png)](https://aka.ms/ml-beginners-videos) --- ## āϟāĻŋāĻŽā§‡āϰ āϏāĻžāĻĨ⧇ āĻĒāϰāĻŋāϚāĻŋāϤ āĻšāύ [![Promo video](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) **Gif āϤ⧈āϰāĻŋ āĻ•āϰ⧇āϛ⧇āύ** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) > đŸŽĨ āωāĻĒāϰ⧇āϰ āĻ›āĻŦāĻŋāϤ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύ āĻĒā§āϰāĻ•āĻ˛ā§āĻĒ āĻāĻŦāĻ‚ āϝāĻžāϰāĻž āĻāϟāĻŋ āϤ⧈āϰāĻŋ āĻ•āϰ⧇āϛ⧇āύ āϤāĻžāĻĻ⧇āϰ āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āĻāĻ•āϟāĻŋ āĻ­āĻŋāĻĄāĻŋāĻ“ āĻĻ⧇āĻ–āϤ⧇! --- ## āĻļāĻŋāĻ•ā§āώāĻžāĻĻāĻžāύ āĻĒāĻĻā§āϧāϤāĻŋ āφāĻŽāϰāĻž āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽāϟāĻŋ āϤ⧈āϰāĻŋ āĻ•āϰāĻžāϰ āϏāĻŽāϝāĻŧ āĻĻ⧁āϟāĻŋ āĻļāĻŋāĻ•ā§āώāĻžāĻĻāĻžāύ āύ⧀āϤāĻŋ āĻŦ⧇āϛ⧇ āύāĻŋāϝāĻŧ⧇āĻ›āĻŋ: āĻāϟāĻŋ āĻšāĻžāϤ⧇-āĻ•āϞāĻŽā§‡ **āĻĒā§āϰāĻ•āĻ˛ā§āĻĒ-āĻ­āĻŋāĻ¤ā§āϤāĻŋāĻ•** āĻāĻŦāĻ‚ āĻāϤ⧇ **āĻĒā§āϰāĻžāϝāĻŧāĻļāχ āϕ⧁āχāϜ** āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āϰāϝāĻŧ⧇āϛ⧇āĨ¤ āĻāĻ›āĻžāĻĄāĻŧāĻžāĻ“, āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽā§‡ āĻāĻ•āϟāĻŋ āϏāĻžāϧāĻžāϰāĻŖ **āĻĨāĻŋāĻŽ** āϰāϝāĻŧ⧇āϛ⧇ āϝāĻž āĻāϟāĻŋāϕ⧇ āϏāĻ‚āĻšāϤāĻŋ āĻĒā§āϰāĻĻāĻžāύ āĻ•āϰ⧇āĨ¤ āĻĒā§āϰāĻ•āĻ˛ā§āĻĒ⧇āϰ āϏāĻžāĻĨ⧇ āϏāĻžāĻŽāĻžā§āϜāĻ¸ā§āϝ āϰ⧇āϖ⧇ āĻŦāĻŋāώāϝāĻŧāĻŦāĻ¸ā§āϤ⧁ āύāĻŋāĻļā§āϚāĻŋāϤ āĻ•āϰāĻžāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡, āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āĻĻ⧇āϰ āϜāĻ¨ā§āϝ āĻĒā§āϰāĻ•ā§āϰāĻŋāϝāĻŧāĻžāϟāĻŋ āφāϰāĻ“ āφāĻ•āĻ°ā§āώāĻŖā§€āϝāĻŧ āĻšāϝāĻŧ⧇ āĻ“āϠ⧇ āĻāĻŦāĻ‚ āϧāĻžāϰāĻŖāĻžāϗ⧁āϞāĻŋāϰ āϧāĻžāϰāĻŖāĻ•ā§āώāĻŽāϤāĻž āĻŦ⧃āĻĻā§āϧāĻŋ āĻĒāĻžāϝāĻŧāĨ¤ āĻāĻ›āĻžāĻĄāĻŧāĻžāĻ“, āĻāĻ•āϟāĻŋ āĻ•ā§āϞāĻžāϏ⧇āϰ āφāϗ⧇ āĻāĻ•āϟāĻŋ āĻ•āĻŽ āĻā§āρāĻ•āĻŋāϰ āϕ⧁āχāϜ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āϰ āĻāĻ•āϟāĻŋ āĻŦāĻŋāώāϝāĻŧ āĻļ⧇āĻ–āĻžāϰ āωāĻĻā§āĻĻ⧇āĻļā§āϝ āĻ¸ā§āĻĨāĻžāĻĒāύ āĻ•āϰ⧇, āϝāĻ–āύ āĻ•ā§āϞāĻžāϏ⧇āϰ āĻĒāϰ⧇ āĻāĻ•āϟāĻŋ āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āϕ⧁āχāϜ āφāϰāĻ“ āϧāĻžāϰāĻŖāĻ•ā§āώāĻŽāϤāĻž āύāĻŋāĻļā§āϚāĻŋāϤ āĻ•āϰ⧇āĨ¤ āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽāϟāĻŋ āύāĻŽāύ⧀āϝāĻŧ āĻāĻŦāĻ‚ āĻŽāϜāĻžāĻĻāĻžāϰ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ āĻĄāĻŋāϜāĻžāχāύ āĻ•āϰāĻž āĻšāϝāĻŧ⧇āϛ⧇ āĻāĻŦāĻ‚ āĻāϟāĻŋ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻŦāĻž āφāĻ‚āĻļāĻŋāĻ•āĻ­āĻžāĻŦ⧇ āύ⧇āĻ“āϝāĻŧāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āĻĒā§āϰāĻ•āĻ˛ā§āĻĒāϗ⧁āϞāĻŋ āϛ⧋āϟ āĻĨ⧇āϕ⧇ āĻļ⧁āϰ⧁ āĻšāϝāĻŧ āĻāĻŦāĻ‚ ⧧⧍ āϏāĻĒā§āϤāĻžāĻšā§‡āϰ āϚāĻ•ā§āϰ⧇āϰ āĻļ⧇āώ⧇ āĻ•ā§āϰāĻŽāĻļ āϜāϟāĻŋāϞ āĻšāϝāĻŧ⧇ āĻ“āϠ⧇āĨ¤ āĻāχ āĻĒāĻžāĻ ā§āϝāĻ•ā§āϰāĻŽā§‡ ML-āĻāϰ āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻœā§€āĻŦāύ⧇āϰ āĻĒā§āϰāϝāĻŧā§‹āϗ⧇āϰ āωāĻĒāϰ āĻāĻ•āϟāĻŋ āĻĒā§‹āĻ¸ā§āϟāĻ¸ā§āĻ•ā§āϰāĻŋāĻĒā§āϟāĻ“ āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āϰāϝāĻŧ⧇āϛ⧇, āϝāĻž āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻ•ā§āϰ⧇āĻĄāĻŋāϟ āĻšāĻŋāϏāĻžāĻŦ⧇ āĻŦāĻž āφāϞ⧋āϚāύāĻžāϰ āĻ­āĻŋāĻ¤ā§āϤāĻŋ āĻšāĻŋāϏāĻžāĻŦ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ > āφāĻŽāĻžāĻĻ⧇āϰ [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), āĻāĻŦāĻ‚ [Translation](TRANSLATIONS.md) āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻŋāĻ•āĻž āϖ⧁āρāϜ⧁āύāĨ¤ āφāĻŽāϰāĻž āφāĻĒāύāĻžāϰ āĻ—āĻ āύāĻŽā§‚āϞāĻ• āĻĒā§āϰāϤāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻ¸ā§āĻŦāĻžāĻ—āϤ āϜāĻžāύāĻžāχ! ## āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻĒāĻžāĻ  āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āĻ•āϰ⧇ - āϐāĻšā§āĻ›āĻŋāĻ• āĻ¸ā§āϕ⧇āϚāύ⧋āϟ - āϐāĻšā§āĻ›āĻŋāĻ• āϏāĻŽā§āĻĒā§‚āϰāĻ• āĻ­āĻŋāĻĄāĻŋāĻ“ - āĻ­āĻŋāĻĄāĻŋāĻ“ āĻ“āϝāĻŧāĻžāĻ•āĻĨā§āϰ⧁ (āĻ•āĻŋāϛ⧁ āĻĒāĻžāϠ⧇āϰ āϜāĻ¨ā§āϝ) - [āĻĒā§āϰāĻžāĻ•-āϞ⧇āĻ•āϚāĻžāϰ āĻ“āϝāĻŧāĻžāĻ°ā§āĻŽāφāĻĒ āϕ⧁āχāϜ](https://ff-quizzes.netlify.app/en/ml/) - āϞāĻŋāĻ–āĻŋāϤ āĻĒāĻžāĻ  - āĻĒā§āϰāĻ•āĻ˛ā§āĻĒ-āĻ­āĻŋāĻ¤ā§āϤāĻŋāĻ• āĻĒāĻžāϠ⧇āϰ āϜāĻ¨ā§āϝ, āĻĒā§āϰāĻ•āĻ˛ā§āĻĒāϟāĻŋ āϕ⧀āĻ­āĻžāĻŦ⧇ āϤ⧈āϰāĻŋ āĻ•āϰāĻŦ⧇āύ āϤāĻžāϰ āϧāĻžāĻĒ⧇ āϧāĻžāĻĒ⧇ āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻŋāĻ•āĻž - āĻœā§āĻžāĻžāύ āϝāĻžāϚāĻžāχ - āĻāĻ•āϟāĻŋ āĻšā§āϝāĻžāϞ⧇āĻžā§āϜ - āϏāĻŽā§āĻĒā§‚āϰāĻ• āĻĒāĻžāĻ ā§āϝ - āĻ…ā§āϝāĻžāϏāĻžāχāύāĻŽā§‡āĻ¨ā§āϟ - [āĻĒāϰ-āϞ⧇āĻ•āϚāĻžāϰ āϕ⧁āχāϜ](https://ff-quizzes.netlify.app/en/ml/) > **āĻ­āĻžāώāĻž āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āĻāĻ•āϟāĻŋ āύ⧋āϟ**: āĻāχ āĻĒāĻžāĻ āϗ⧁āϞāĻŋ āĻĒā§āϰāϧāĻžāύāϤ Python-āĻ āϞ⧇āĻ–āĻž āĻšāϝāĻŧ⧇āϛ⧇, āϤāĻŦ⧇ āĻ…āύ⧇āĻ•āϗ⧁āϞāĻŋ R-āĻāĻ“ āωāĻĒāϞāĻŦā§āϧāĨ¤ āĻāĻ•āϟāĻŋ R āĻĒāĻžāĻ  āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻ•āϰāϤ⧇, `/solution` āĻĢā§‹āĻ˛ā§āĻĄāĻžāϰ⧇ āϝāĻžāύ āĻāĻŦāĻ‚ R āĻĒāĻžāĻ āϗ⧁āϞāĻŋ āϏāĻ¨ā§āϧāĻžāύ āĻ•āϰ⧁āύāĨ¤ āĻāϗ⧁āϞāĻŋāϤ⧇ āĻāĻ•āϟāĻŋ .rmd āĻāĻ•ā§āϏāĻŸā§‡āύāĻļāύ āϰāϝāĻŧ⧇āϛ⧇ āϝāĻž **R Markdown** āĻĢāĻžāχāϞāϕ⧇ āωāĻĒāĻ¸ā§āĻĨāĻžāĻĒāύ āĻ•āϰ⧇ āϝāĻž `Markdown document`-āĻ `code chunks` (R āĻŦāĻž āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ­āĻžāώāĻžāϰ) āĻāĻŦāĻ‚ āĻāĻ•āϟāĻŋ `YAML header` (āϝāĻž āφāωāϟāĻĒ⧁āϟ āĻĢāϰāĻŽā§āϝāĻžāϟ āϝ⧇āĻŽāύ PDF āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰ⧇) āĻāĻŽā§āĻŦ⧇āĻĄāĻŋāĻ‚ āĻšāĻŋāϏāĻžāĻŦ⧇ āϏāĻšāϜāĻ­āĻžāĻŦ⧇ āϏāĻ‚āĻœā§āĻžāĻžāϝāĻŧāĻŋāϤ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āĻāϟāĻŋ āĻĄā§‡āϟāĻž āϏāĻžāϝāĻŧ⧇āĻ¨ā§āϏ⧇āϰ āϜāĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āωāĻĻāĻžāĻšāϰāĻŖāĻŽā§‚āϞāĻ• āϞ⧇āĻ–āĻžāϰ āĻ•āĻžāĻ āĻžāĻŽā§‹ āĻšāĻŋāϏāĻžāĻŦ⧇ āĻ•āĻžāϜ āĻ•āϰ⧇ āĻ•āĻžāϰāĻŖ āĻāϟāĻŋ āφāĻĒāύāĻžāϕ⧇ āφāĻĒāύāĻžāϰ āϕ⧋āĻĄ, āĻāϰ āφāωāϟāĻĒ⧁āϟ āĻāĻŦāĻ‚ āφāĻĒāύāĻžāϰ āϚāĻŋāĻ¨ā§āϤāĻžāĻ­āĻžāĻŦāύāĻžāϗ⧁āϞāĻŋ Markdown-āĻ āϞāĻŋāĻ–āϤ⧇ āĻĻ⧇āϝāĻŧāĨ¤ āϤāĻĻā§āĻŦā§āϝāϤ⧀āϤ, R Markdown āĻĄāϕ⧁āĻŽā§‡āĻ¨ā§āϟāϗ⧁āϞāĻŋ PDF, HTML, āĻŦāĻž Word-āĻāϰ āĻŽāϤ⧋ āφāωāϟāĻĒ⧁āϟ āĻĢāϰāĻŽā§āϝāĻžāĻŸā§‡ āϰ⧇āĻ¨ā§āĻĄāĻžāϰ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ > **āϕ⧁āχāϜ āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āĻāĻ•āϟāĻŋ āύ⧋āϟ**: āϏāĻŽāĻ¸ā§āϤ āϕ⧁āχāϜ [Quiz App āĻĢā§‹āĻ˛ā§āĻĄāĻžāϰ⧇](../../quiz-app) āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āϰāϝāĻŧ⧇āϛ⧇, āĻŽā§‹āϟ ā§Ģ⧍āϟāĻŋ āϕ⧁āχāϜ, āĻĒā§āϰāϤāĻŋāϟāĻŋāϤ⧇ āϤāĻŋāύāϟāĻŋ āĻĒā§āϰāĻļā§āύāĨ¤ āĻāϗ⧁āϞāĻŋ āĻĒāĻžāϠ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻĨ⧇āϕ⧇ āϞāĻŋāĻ™ā§āĻ• āĻ•āϰāĻž āĻšāϝāĻŧ⧇āϛ⧇ āϤāĻŦ⧇ āϕ⧁āχāϜ āĻ…ā§āϝāĻžāĻĒāϟāĻŋ āĻ¸ā§āĻĨāĻžāύ⧀āϝāĻŧāĻ­āĻžāĻŦ⧇ āϚāĻžāϞāĻžāύ⧋ āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇; `quiz-app` āĻĢā§‹āĻ˛ā§āĻĄāĻžāϰ⧇ āύāĻŋāĻ°ā§āĻĻ⧇āĻļāύāĻž āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧇ āĻāϟāĻŋ āĻ¸ā§āĻĨāĻžāύ⧀āϝāĻŧāĻ­āĻžāĻŦ⧇ āĻšā§‹āĻ¸ā§āϟ āĻ•āϰ⧁āύ āĻŦāĻž Azure-āĻ āĻĄāĻŋāĻĒā§āϞāϝāĻŧ āĻ•āϰ⧁āύāĨ¤ | āĻĒāĻžāĻ  āύāĻŽā§āĻŦāϰ | āĻŦāĻŋāώāϝāĻŧ | āĻĒāĻžāϠ⧇āϰ āĻ—ā§‹āĻˇā§āĻ ā§€ | āĻļ⧇āĻ–āĻžāϰ āωāĻĻā§āĻĻ⧇āĻļā§āϝ | āϞāĻŋāĻ™ā§āĻ•āĻ•ā§ƒāϤ āĻĒāĻžāĻ  | āϞ⧇āĻ–āĻ• | | :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | | 01 | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚-āĻāϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [Introduction](1-Introduction/README.md) | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚-āĻāϰ āĻŽā§ŒāϞāĻŋāĻ• āϧāĻžāϰāĻŖāĻžāϗ⧁āϞāĻŋ āĻļāĻŋāϖ⧁āύ | [Lesson](1-Introduction/1-intro-to-ML/README.md) | Muhammad | | 02 | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚-āĻāϰ āχāϤāĻŋāĻšāĻžāϏ | [Introduction](1-Introduction/README.md) | āĻāχ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āύāĻŋāĻšāĻŋāϤ āχāϤāĻŋāĻšāĻžāϏ āĻļāĻŋāϖ⧁āύ | [Lesson](1-Introduction/2-history-of-ML/README.md) | Jen āĻāĻŦāĻ‚ Amy | | 03 | āĻ¨ā§āϝāĻžāĻ¯ā§āϝāϤāĻž āĻāĻŦāĻ‚ āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ | [āĻ­ā§‚āĻŽāĻŋāĻ•āĻž](1-Introduction/README.md) | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻŽāĻĄā§‡āϞ āϤ⧈āϰāĻŋ āĻāĻŦāĻ‚ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰāĻžāϰ āϏāĻŽā§Ÿ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āĻĻ⧇āϰ āĻ¨ā§āϝāĻžāĻ¯ā§āϝāϤāĻž āύāĻŋā§Ÿā§‡ āϕ⧋āύ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚āĻ°ā§āĻŖ āĻĻāĻžāĻ°ā§āĻļāύāĻŋāĻ• āĻŦāĻŋāώ⧟āϗ⧁āϞ⧋ āĻŦāĻŋāĻŦ⧇āϚāύāĻž āĻ•āϰāĻž āωāϚāĻŋāϤ? | [āĻĒāĻžāĻ ](1-Introduction/3-fairness/README.md) | Tomomi | | 04 | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ā§Ÿā§‡āϰ āĻ•ā§ŒāĻļāϞāϏāĻŽā§‚āĻš | [āĻ­ā§‚āĻŽāĻŋāĻ•āĻž](1-Introduction/README.md) | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻ—āĻŦ⧇āώāĻ•āϰāĻž āĻŽāĻĄā§‡āϞ āϤ⧈āϰāĻŋ āĻ•āϰāϤ⧇ āϕ⧋āύ āĻ•ā§ŒāĻļāϞ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇āύ? | [āĻĒāĻžāĻ ](1-Introduction/4-techniques-of-ML/README.md) | Chris āĻāĻŦāĻ‚ Jen | | 05 | āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ](2-Regression/README.md) | āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ āĻŽāĻĄā§‡āϞ⧇āϰ āϜāĻ¨ā§āϝ āĻĒāĻžāχāĻĨāύ āĻāĻŦāĻ‚ Scikit-learn āĻĻāĻŋā§Ÿā§‡ āĻļ⧁āϰ⧁ āĻ•āϰ⧁āύ | [Python](2-Regression/1-Tools/README.md) â€ĸ [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen â€ĸ Eric Wanjau | | 06 | āωāĻ¤ā§āϤāϰ āφāĻŽā§‡āϰāĻŋāĻ•āĻžāϰ āϕ⧁āĻŽā§œāĻžāϰ āĻĻāĻžāĻŽ 🎃 | [āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ](2-Regression/README.md) | āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ā§Ÿā§‡āϰ āĻĒā§āϰāĻ¸ā§āϤ⧁āϤāĻŋāϰ āϜāĻ¨ā§āϝ āĻĄā§‡āϟāĻž āĻ­āĻŋāĻœā§āϝ⧁⧟āĻžāϞāĻžāχāϜ āĻāĻŦāĻ‚ āĻĒāϰāĻŋāĻˇā§āĻ•āĻžāϰ āĻ•āϰ⧁āύ | [Python](2-Regression/2-Data/README.md) â€ĸ [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen â€ĸ Eric Wanjau | | 07 | āωāĻ¤ā§āϤāϰ āφāĻŽā§‡āϰāĻŋāĻ•āĻžāϰ āϕ⧁āĻŽā§œāĻžāϰ āĻĻāĻžāĻŽ 🎃 | [āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ](2-Regression/README.md) | āϞāĻŋāύāĻŋ⧟āĻžāϰ āĻāĻŦāĻ‚ āĻĒāϞāĻŋāύ⧋āĻŽāĻŋ⧟āĻžāϞ āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ āĻŽāĻĄā§‡āϞ āϤ⧈āϰāĻŋ āĻ•āϰ⧁āύ | [Python](2-Regression/3-Linear/README.md) â€ĸ [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen āĻāĻŦāĻ‚ Dmitry â€ĸ Eric Wanjau | | 08 | āωāĻ¤ā§āϤāϰ āφāĻŽā§‡āϰāĻŋāĻ•āĻžāϰ āϕ⧁āĻŽā§œāĻžāϰ āĻĻāĻžāĻŽ 🎃 | [āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ](2-Regression/README.md) | āĻāĻ•āϟāĻŋ āϞāϜāĻŋāĻ¸ā§āϟāĻŋāĻ• āϰāĻŋāĻ—ā§āϰ⧇āĻļāύ āĻŽāĻĄā§‡āϞ āϤ⧈āϰāĻŋ āĻ•āϰ⧁āύ | [Python](2-Regression/4-Logistic/README.md) â€ĸ [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen â€ĸ Eric Wanjau | | 09 | āĻāĻ•āϟāĻŋ āĻ“ā§Ÿā§‡āĻŦ āĻ…ā§āϝāĻžāĻĒ đŸ”Œ | [āĻ“ā§Ÿā§‡āĻŦ āĻ…ā§āϝāĻžāĻĒ](3-Web-App/README.md) | āφāĻĒāύāĻžāϰ āĻĒā§āϰāĻļāĻŋāĻ•ā§āώāĻŋāϤ āĻŽāĻĄā§‡āϞ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āĻ“ā§Ÿā§‡āĻŦ āĻ…ā§āϝāĻžāĻĒ āϤ⧈āϰāĻŋ āĻ•āϰ⧁āύ | [Python](3-Web-App/1-Web-App/README.md) | Jen | | 10 | āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāϗ⧇āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāĻ—](4-Classification/README.md) | āφāĻĒāύāĻžāϰ āĻĄā§‡āϟāĻž āĻĒāϰāĻŋāĻˇā§āĻ•āĻžāϰ, āĻĒā§āϰāĻ¸ā§āϤ⧁āϤ āĻāĻŦāĻ‚ āĻ­āĻŋāĻœā§āϝ⧁⧟āĻžāϞāĻžāχāϜ āĻ•āϰ⧁āύ; āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāϗ⧇āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [Python](4-Classification/1-Introduction/README.md) â€ĸ [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen āĻāĻŦāĻ‚ Cassie â€ĸ Eric Wanjau | | 11 | āϏ⧁āĻ¸ā§āĻŦāĻžāĻĻ⧁ āĻāĻļāĻŋ⧟āĻžāύ āĻāĻŦāĻ‚ āĻ­āĻžāϰāĻ¤ā§€ā§Ÿ āĻ–āĻžāĻŦāĻžāϰ 🍜 | [āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāĻ—](4-Classification/README.md) | āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāϜāϕ⧇āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [Python](4-Classification/2-Classifiers-1/README.md) â€ĸ [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen āĻāĻŦāĻ‚ Cassie â€ĸ Eric Wanjau | | 12 | āϏ⧁āĻ¸ā§āĻŦāĻžāĻĻ⧁ āĻāĻļāĻŋ⧟āĻžāύ āĻāĻŦāĻ‚ āĻ­āĻžāϰāĻ¤ā§€ā§Ÿ āĻ–āĻžāĻŦāĻžāϰ 🍜 | [āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāĻ—](4-Classification/README.md) | āφāϰāĻ“ āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāϜāĻ• | [Python](4-Classification/3-Classifiers-2/README.md) â€ĸ [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen āĻāĻŦāĻ‚ Cassie â€ĸ Eric Wanjau | | 13 | āϏ⧁āĻ¸ā§āĻŦāĻžāĻĻ⧁ āĻāĻļāĻŋ⧟āĻžāύ āĻāĻŦāĻ‚ āĻ­āĻžāϰāĻ¤ā§€ā§Ÿ āĻ–āĻžāĻŦāĻžāϰ 🍜 | [āĻļā§āϰ⧇āĻŖā§€āĻŦāĻŋāĻ­āĻžāĻ—](4-Classification/README.md) | āφāĻĒāύāĻžāϰ āĻŽāĻĄā§‡āϞ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻāĻ•āϟāĻŋ āϏ⧁āĻĒāĻžāϰāĻŋāĻļāĻ•āĻžāϰ⧀ āĻ“ā§Ÿā§‡āĻŦ āĻ…ā§āϝāĻžāĻĒ āϤ⧈āϰāĻŋ āĻ•āϰ⧁āύ | [Python](4-Classification/4-Applied/README.md) | Jen | | 14 | āĻ•ā§āϞāĻžāĻ¸ā§āϟāĻžāϰāĻŋāĻ‚ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [āĻ•ā§āϞāĻžāĻ¸ā§āϟāĻžāϰāĻŋāĻ‚](5-Clustering/README.md) | āφāĻĒāύāĻžāϰ āĻĄā§‡āϟāĻž āĻĒāϰāĻŋāĻˇā§āĻ•āĻžāϰ, āĻĒā§āϰāĻ¸ā§āϤ⧁āϤ āĻāĻŦāĻ‚ āĻ­āĻŋāĻœā§āϝ⧁⧟āĻžāϞāĻžāχāϜ āĻ•āϰ⧁āύ; āĻ•ā§āϞāĻžāĻ¸ā§āϟāĻžāϰāĻŋāĻ‚ā§Ÿā§‡āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [Python](5-Clustering/1-Visualize/README.md) â€ĸ [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen â€ĸ Eric Wanjau | | 15 | āύāĻžāχāĻœā§‡āϰāĻŋ⧟āĻžāύ āϏāĻ™ā§āĻ—ā§€āϤ⧇āϰ āϰ⧁āϚāĻŋ āĻ…āĻ¨ā§āĻŦ⧇āώāĻŖ 🎧 | [āĻ•ā§āϞāĻžāĻ¸ā§āϟāĻžāϰāĻŋāĻ‚](5-Clustering/README.md) | K-Means āĻ•ā§āϞāĻžāĻ¸ā§āϟāĻžāϰāĻŋāĻ‚ āĻĒāĻĻā§āϧāϤāĻŋ āĻ…āĻ¨ā§āĻŦ⧇āώāĻŖ āĻ•āϰ⧁āύ | [Python](5-Clustering/2-K-Means/README.md) â€ĸ [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen â€ĸ Eric Wanjau | | 16 | āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻ­āĻžāώāĻž āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāĻ•āϰāϪ⧇āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ â˜•ī¸ | [āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻ­āĻžāώāĻž āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāĻ•āϰāĻŖ](6-NLP/README.md) | āĻāĻ•āϟāĻŋ āϏāĻžāϧāĻžāϰāĻŖ āĻŦāϟ āϤ⧈āϰāĻŋ āĻ•āϰ⧇ NLP āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āĻŽā§ŒāϞāĻŋāĻ• āϧāĻžāϰāĻŖāĻž āĻļāĻŋāϖ⧁āύ | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | | 17 | āϏāĻžāϧāĻžāϰāĻŖ NLP āĻ•āĻžāϜ â˜•ī¸ | [āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻ­āĻžāώāĻž āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāĻ•āϰāĻŖ](6-NLP/README.md) | āĻ­āĻžāώāĻžāϰ āĻ—āĻ āύ āύāĻŋā§Ÿā§‡ āĻ•āĻžāϜ āĻ•āϰāĻžāϰ āϏāĻŽā§Ÿ āĻĒā§āĻ°ā§Ÿā§‹āϜāĻ¨ā§€ā§Ÿ āϏāĻžāϧāĻžāϰāĻŖ āĻ•āĻžāϜāϗ⧁āϞ⧋ āĻŦ⧁āĻā§‡ NLP āĻœā§āĻžāĻžāύ āφāϰāĻ“ āĻ—āĻ­ā§€āϰ āĻ•āϰ⧁āύ | [Python](6-NLP/2-Tasks/README.md) | Stephen | | 18 | āĻ…āύ⧁āĻŦāĻžāĻĻ āĻāĻŦāĻ‚ āĻ…āύ⧁āĻ­ā§‚āϤāĻŋ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ â™Ĩī¸ | [āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻ­āĻžāώāĻž āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāĻ•āϰāĻŖ](6-NLP/README.md) | Jane Austen āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻ…āύ⧁āĻŦāĻžāĻĻ āĻāĻŦāĻ‚ āĻ…āύ⧁āĻ­ā§‚āϤāĻŋ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | | 19 | āχāωāϰ⧋āĻĒ⧇āϰ āϰ⧋āĻŽāĻžāĻ¨ā§āϟāĻŋāĻ• āĻšā§‹āĻŸā§‡āϞ â™Ĩī¸ | [āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻ­āĻžāώāĻž āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāĻ•āϰāĻŖ](6-NLP/README.md) | āĻšā§‹āĻŸā§‡āϞ āϰāĻŋāĻ­āĻŋāω āύāĻŋā§Ÿā§‡ āĻ…āύ⧁āĻ­ā§‚āϤāĻŋ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ ā§§ | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | | 20 | āχāωāϰ⧋āĻĒ⧇āϰ āϰ⧋āĻŽāĻžāĻ¨ā§āϟāĻŋāĻ• āĻšā§‹āĻŸā§‡āϞ â™Ĩī¸ | [āĻĒā§āϰāĻžāĻ•ā§ƒāϤāĻŋāĻ• āĻ­āĻžāώāĻž āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžāĻ•āϰāĻŖ](6-NLP/README.md) | āĻšā§‹āĻŸā§‡āϞ āϰāĻŋāĻ­āĻŋāω āύāĻŋā§Ÿā§‡ āĻ…āύ⧁āĻ­ā§‚āϤāĻŋ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ ⧍ | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | | 21 | āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ⧇āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ](7-TimeSeries/README.md) | āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ⧇āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | | 22 | âšĄī¸ āĻŦāĻŋāĻļā§āĻŦ āĻŦāĻŋāĻĻā§āĻ¯ā§ā§Ž āĻŦā§āϝāĻŦāĻšāĻžāϰ âšĄī¸ - ARIMA āĻĻāĻŋā§Ÿā§‡ āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ | [āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ](7-TimeSeries/README.md) | ARIMA āĻĻāĻŋā§Ÿā§‡ āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | | 23 | âšĄī¸ āĻŦāĻŋāĻļā§āĻŦ āĻŦāĻŋāĻĻā§āĻ¯ā§ā§Ž āĻŦā§āϝāĻŦāĻšāĻžāϰ âšĄī¸ - SVR āĻĻāĻŋā§Ÿā§‡ āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ | [āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ](7-TimeSeries/README.md) | Support Vector Regressor āĻĻāĻŋā§Ÿā§‡ āϟāĻžāχāĻŽ āϏāĻŋāϰāĻŋāϜ āĻĒā§‚āĻ°ā§āĻŦāĻžāĻ­āĻžāϏ | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | | 24 | āϰāĻŋāχāύāĻĢā§‹āĻ°ā§āϏāĻŽā§‡āĻ¨ā§āϟ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ā§Ÿā§‡āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [āϰāĻŋāχāύāĻĢā§‹āĻ°ā§āϏāĻŽā§‡āĻ¨ā§āϟ āϞāĻžāĻ°ā§āύāĻŋāĻ‚](8-Reinforcement/README.md) | Q-Learning āĻĻāĻŋā§Ÿā§‡ āϰāĻŋāχāύāĻĢā§‹āĻ°ā§āϏāĻŽā§‡āĻ¨ā§āϟ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ā§Ÿā§‡āϰ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | | 25 | āĻĒāĻŋāϟāĻžāϰāϕ⧇ āύ⧇āĻ•ā§œā§‡ āĻĨ⧇āϕ⧇ āĻŦāĻžāρāϚāĻžāϤ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰ⧁āύ! đŸē | [āϰāĻŋāχāύāĻĢā§‹āĻ°ā§āϏāĻŽā§‡āĻ¨ā§āϟ āϞāĻžāĻ°ā§āύāĻŋāĻ‚](8-Reinforcement/README.md) | āϰāĻŋāχāύāĻĢā§‹āĻ°ā§āϏāĻŽā§‡āĻ¨ā§āϟ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āϜāĻŋāĻŽ | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | | Postscript | āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻœā§€āĻŦāύ⧇āϰ āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻĒāϰāĻŋāĻ¸ā§āĻĨāĻŋāϤāĻŋ āĻāĻŦāĻ‚ āĻĒā§āĻ°ā§Ÿā§‹āĻ— | [ML in the Wild](9-Real-World/README.md) | āĻ•ā§āϞāĻžāϏāĻŋāĻ•āĻžāϞ āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ā§Ÿā§‡āϰ āφāĻ•āĻ°ā§āώāĻŖā§€ā§Ÿ āĻāĻŦāĻ‚ āĻĒā§āϰāĻ•āĻžāĻļāĻ• āĻŦāĻžāĻ¸ā§āϤāĻŦ āĻœā§€āĻŦāύ⧇āϰ āĻĒā§āĻ°ā§Ÿā§‹āĻ— | [āĻĒāĻžāĻ ](9-Real-World/1-Applications/README.md) | Team | | Postscript | RAI āĻĄā§āϝāĻžāĻļāĻŦā§‹āĻ°ā§āĻĄ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻŽāĻĄā§‡āϞ āĻĄāĻŋāĻŦāĻžāĻ—āĻŋāĻ‚ | [ML in the Wild](9-Real-World/README.md) | Responsible AI āĻĄā§āϝāĻžāĻļāĻŦā§‹āĻ°ā§āĻĄ āωāĻĒāĻžāĻĻāĻžāύ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āĻŽāĻĄā§‡āϞ āĻĄāĻŋāĻŦāĻžāĻ—āĻŋāĻ‚ | [āĻĒāĻžāĻ ](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | > [āĻāχ āϕ⧋āĻ°ā§āϏ⧇āϰ āϜāĻ¨ā§āϝ āϏāĻŽāĻ¸ā§āϤ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āϰāĻŋāϏ⧋āĻ°ā§āϏ Microsoft Learn āϏāĻ‚āĻ—ā§āϰāĻšā§‡ āϖ⧁āρāϜ⧁āύ](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) ## āĻ…āĻĢāϞāĻžāχāύ āĻ…ā§āϝāĻžāĻ•ā§āϏ⧇āϏ āφāĻĒāύāĻŋ [Docsify](https://docsify.js.org/#/) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻāχ āĻĄāϕ⧁āĻŽā§‡āĻ¨ā§āĻŸā§‡āĻļāύ āĻ…āĻĢāϞāĻžāχāύ⧇ āϚāĻžāϞāĻžāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤ āĻāχ āϰāĻŋāĻĒā§‹āϜāĻŋāϟāϰāĻŋ āĻĢāĻ°ā§āĻ• āĻ•āϰ⧁āύ, āφāĻĒāύāĻžāϰ āϞ⧋āĻ•āĻžāϞ āĻŽā§‡āĻļāĻŋāύ⧇ [Docsify āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύ](https://docsify.js.org/#/quickstart), āĻāĻŦāĻ‚ āϤāĻžāϰāĻĒāϰ āĻāχ āϰāĻŋāĻĒā§‹āϜāĻŋāϟāϰāĻŋāϰ āϰ⧁āϟ āĻĢā§‹āĻ˛ā§āĻĄāĻžāϰ⧇ `docsify serve` āϟāĻžāχāĻĒ āĻ•āϰ⧁āύāĨ¤ āĻ“ā§Ÿā§‡āĻŦāϏāĻžāχāϟāϟāĻŋ āφāĻĒāύāĻžāϰ āϞ⧋āĻ•āĻžāϞāĻšā§‹āĻ¸ā§āĻŸā§‡ āĻĒā§‹āĻ°ā§āϟ 3000-āĻ āĻĒāϰāĻŋāĻŦ⧇āĻļāύ āĻ•āϰāĻž āĻšāĻŦ⧇: `localhost:3000`āĨ¤ ## PDFs āϞāĻŋāĻ™ā§āĻ•āϏāĻš āĻ•āĻžāϰāĻŋāϕ⧁āϞāĻžāĻŽā§‡āϰ āĻāĻ•āϟāĻŋ āĻĒāĻŋāĻĄāĻŋāĻāĻĢ [āĻāĻ–āĻžāύ⧇](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf) āϖ⧁āρāϜ⧁āύāĨ¤ ## 🎒 āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āϕ⧋āĻ°ā§āϏāϏāĻŽā§‚āĻš āφāĻŽāĻžāĻĻ⧇āϰ āϟāĻŋāĻŽ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āϕ⧋āĻ°ā§āϏ āϤ⧈āϰāĻŋ āĻ•āϰ⧇! āĻĻ⧇āϖ⧁āύ: - [Edge AI for Beginners](https://aka.ms/edgeai-for-beginners) - [AI Agents for Beginners](https://aka.ms/ai-agents-beginners) - [Generative AI for Beginners](https://aka.ms/genai-beginners) - [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) - [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) - [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java) - [AI for Beginners](https://aka.ms/ai-beginners) - [Data Science for Beginners](https://aka.ms/datascience-beginners) - [ML for Beginners](https://aka.ms/ml-beginners) - [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) - [Web Dev for Beginners](https://aka.ms/webdev-beginners) - [IoT for Beginners](https://aka.ms/iot-beginners) - [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) - [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) - [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) - [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) --- **āĻ…āĻ¸ā§āĻŦā§€āĻ•ā§ƒāϤāĻŋ**: āĻāχ āύāĻĨāĻŋāϟāĻŋ AI āĻ…āύ⧁āĻŦāĻžāĻĻ āĻĒāϰāĻŋāώ⧇āĻŦāĻž [Co-op Translator](https://github.com/Azure/co-op-translator) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻ…āύ⧁āĻŦāĻžāĻĻ āĻ•āϰāĻž āĻšāϝāĻŧ⧇āϛ⧇āĨ¤ āφāĻŽāϰāĻž āϝāĻĨāĻžāϏāĻžāĻ§ā§āϝ āϏāĻ āĻŋāĻ•āϤāĻžāϰ āϜāĻ¨ā§āϝ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāĻŋ, āϤāĻŦ⧇ āĻ…āύ⧁āĻ—ā§āϰāĻš āĻ•āϰ⧇ āĻŽāύ⧇ āϰāĻžāĻ–āĻŦ⧇āύ āϝ⧇ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧ āĻ…āύ⧁āĻŦāĻžāĻĻ⧇ āĻ¤ā§āϰ⧁āϟāĻŋ āĻŦāĻž āĻ…āϏāĻ™ā§āĻ—āϤāĻŋ āĻĨāĻžāĻ•āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤ āĻāϰ āĻŽā§‚āϞ āĻ­āĻžāώāĻžāϝāĻŧ āĻĨāĻžāĻ•āĻž āύāĻĨāĻŋāϟāĻŋāϕ⧇ āĻĒā§āϰāĻžāĻŽāĻžāĻŖāĻŋāĻ• āĻ‰ā§ŽāϏ āĻšāĻŋāϏ⧇āĻŦ⧇ āĻŦāĻŋāĻŦ⧇āϚāύāĻž āĻ•āϰāĻž āωāϚāĻŋāϤāĨ¤ āϗ⧁āϰ⧁āĻ¤ā§āĻŦāĻĒā§‚āĻ°ā§āĻŖ āϤāĻĨā§āϝ⧇āϰ āϜāĻ¨ā§āϝ, āĻĒ⧇āĻļāĻžāĻĻāĻžāϰ āĻŽāĻžāύāĻŦ āĻ…āύ⧁āĻŦāĻžāĻĻ āϏ⧁āĻĒāĻžāϰāĻŋāĻļ āĻ•āϰāĻž āĻšāϝāĻŧāĨ¤ āĻāχ āĻ…āύ⧁āĻŦāĻžāĻĻ āĻŦā§āϝāĻŦāĻšāĻžāϰ⧇āϰ āĻĢāϞ⧇ āϕ⧋āύ⧋ āϭ⧁āϞ āĻŦā§‹āĻāĻžāĻŦ⧁āĻāĻŋ āĻŦāĻž āϭ⧁āϞ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž āĻšāϞ⧇ āφāĻŽāϰāĻž āĻĻāĻžāϝāĻŧāĻŦāĻĻā§āϧ āĻĨāĻžāĻ•āĻŦ āύāĻžāĨ¤