
Introduction to machine learning

🎥  Click the image above for a video discussing the difference between machine learning, AI,

and deep learning.

Pre-lecture quiz

Introduction

Welcome to this course on classical machine learning for beginners! Whether you're completely new

to this topic, or an experienced ML practitioner looking to brush up on an area, we're happy to have

you join us! We want to create a friendly launching spot for your ML study and would be happy to

evaluate, respond to, and incorporate your feedback.

https://youtu.be/lTd9RSxS9ZE
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/1/
https://github.com/microsoft/ML-For-Beginners/discussions
https://github.com/Microsoft/ML-For-Beginners


🎥  Click the image above for a video: MIT's John Guttag introduces machine learning

Getting started with machine learning

Before starting with this curriculum, you need to have your computer set up and ready to run

notebooks locally.

Configure your machine with these videos. Learn more about how to set up your machine in this

set of videos.

Learn Python. It's also recommended to have a basic understanding of Python, a programming

language useful for data scientists that we use in this course.

Learn Node.js and JavaScript. We also use JavaScript a few times in this course when building

web apps, so you will need to have node and npm installed, as well as Visual Studio Code

available for both Python and JavaScript development.

Create a GitHub account. Since you found us here on GitHub, you might already have an

account, but if not, create one and then fork this curriculum to use on your own. (Feel free to give

us a star, too 😊 )

Explore Scikit-learn. Familiarize yourself with Scikit-learn, a set of ML libraries that we reference

in these lessons.

What is machine learning?

The term 'machine learning' is one of the most popular and frequently used terms of today. There is a

nontrivial possibility that you have heard this term at least once if you have some sort of familiarity

https://youtu.be/h0e2HAPTGF4
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa
https://nodejs.org/
https://www.npmjs.com/
https://code.visualstudio.com/
https://github.com/
http://localhost:3001/[https://scikit-learn.org/stable/user_guide.html


with technology, no matter what domain you work in. The mechanics of machine learning, however,

are a mystery to most people. For a machine learning beginner, the subject can sometimes feel

overwhelming. Therefore, it is important to understand what machine learning actually is, and to learn

about it step by step, through practical examples.

Google Trends shows the recent 'hype curve' of the term 'machine learning'

We live in a universe full of fascinating mysteries. Great scientists such as Stephen Hawking, Albert

Einstein, and many more have devoted their lives to searching for meaningful information that

uncovers the mysteries of the world around us. This is the human condition of learning: a human child

learns new things and uncovers the structure of their world year by year as they grow to adulthood.

A child's brain and senses perceive the facts of their surroundings and gradually learn the hidden

patterns of life which help the child to craft logical rules to identify learned patterns. The learning

process of the human brain makes humans the most sophisticated living creature of this world.

Learning continuously by discovering hidden patterns and then innovating on those patterns enables

us to make ourselves better and better throughout our lifetime. This learning capacity and evolving

capability is related to a concept called brain plasticity. Superficially, we can draw some motivational

similarities between the learning process of the human brain and the concepts of machine learning.

The human brain perceives things from the real world, processes the perceived information, makes

rational decisions, and performs certain actions based on circumstances. This is what we called

behaving intelligently. When we program a facsimile of the intelligent behavioral process to a

machine, it is called artificial intelligence (AI).

https://www.simplypsychology.org/brain-plasticity.html
https://www.livescience.com/29365-human-brain.html


Although the terms can be confused, machine learning (ML) is an important subset of artificial

intelligence. ML is concerned with using specialized algorithms to uncover meaningful

information and find hidden patterns from perceived data to corroborate the rational decision-

making process.

A diagram showing the relationships between AI, ML, deep learning, and data science.

Infographic by Jen Looper inspired by this graphic

What you will learn in this course

In this curriculum, we are going to cover only the core concepts of machine learning that a beginner

must know. We cover what we call 'Classical machine learning' primarily using Scikit-learn, an

excellent library many students use to learn the basics. To understand broader concepts of artificial

intelligence or deep learning, a strong fundamental knowledge of machine learning is indispensable,

and so we would like to offer it here.

You will additionally learn the basics of Regression, Classification, Clustering, natural language

processing, Time Series Forecasting, and Reinforcement Learning, as well as real-world applications,

the history of ML, ML and Fairness, and how to use your model in web apps.

In this course you will learn:

Core concepts of machine learning

https://twitter.com/jenlooper
https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining


The history of ML

ML and fairness

The definition of "Classical machine learning"

Regression

Classification

Clustering

natural language processing

Time Series Forecasting

Reinforcement Learning

Real-world applications

What we will not cover

deep learning

neural networks

AI

To make for a better learning experience, we will avoid the complexities of neural networks, 'deep

learning' - many-layered model-building using neural networks - and AI, which we will discuss in a

different curriculum. We also will offer a forthcoming data science curriculum to focus on that

aspect of this larger field.

Why study machine learning?

Machine learning, from a systems perspective, is defined as the creation of automated systems that

can learn hidden patterns from data to aid in making intelligent decisions.

This motivation is loosely inspired by how the human brain learns certain things based on the data it

perceives from the outside world.

✅  Think for a minute why a business would want to try to use machine learning strategies vs.

creating a hard-coded rules-based engine.



Applications of machine learning

Applications of machine learning are now almost everywhere, and are as ubiquitous as the data that

is flowing around our societies, generated by our smart phones, connected devices, and other

systems. Considering the immense potential of state-of-the-art machine learning algorithms,

researchers have been exploring their capability to solve multi-dimensional and multi-disciplinary

real-life problems with great positive outcomes.

You can use machine learning in many ways:

To predict the likelihood of disease from a patient's medical history or reports.

To leverage weather data to predict weather events.

To understand the sentiment of a text.

To detect fake news to stop the spread of propaganda.

Finance, economics, earth science, space exploration, biomedical engineering, cognitive science,

and even fields in the humanities have adapted machine learning to solve the arduous, data-

processing heavy problems of their domain.

Machine learning automates the process of pattern-discovery by finding meaningful insights from

real-world or generated data. It has proven itself to be highly valuable in business, health, and

financial applications, among others.

In the near future, understanding the basics of machine learning is going to be a must for people from

any domain due to its widespread adoption.

🚀 Challenge

Sketch, on paper or using an online app like Excalidraw, your understanding of the differences

between AI, ML, deep learning, and data science. Add some ideas of problems that each of these

techniques are good at solving.

Post-lecture quiz

Review & Self Study

To learn more about how you can work with ML algorithms in the cloud, follow this Learning Path.

https://excalidraw.com/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/2/
https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa


Assignment

Get up and running

History of machine learning

Sketchnote by Tomomi Imura

Pre-lecture quiz

In this lesson, we will walk through the major milestones in the history of machine learning and

artificial intelligence.

The history of artificial intelligence, AI, as a field is intertwined with the history of machine learning, as

the algorithms and computational advances that underpin ML fed into the development of AI. It is

https://www.twitter.com/girlie_mac
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/3/


useful to remember that, while these fields as distinct areas of inquiry began to crystallize in the

1950s, important algorithmical, statistical, mathematical, computational and technical discoveries

predated and overlapped this era. In fact, people have been thinking about these questions for

hundreds of years: this article discusses the historical intellectual underpinnings of the idea of a

'thinking machine.'

Notable discoveries

1763, 1812 Bayes Theorem and its predecessors. This theorem and its applications underlie

inference, describing the probability of an event occurring based on prior knowledge.

1805 Least Square Theory by French mathematician Adrien-Marie Legendre. This theory, which

you will learn about in our Regression unit, helps in data fitting.

1913 Markov Chains named after Russian mathematician Andrey Markov is used to describe a

sequence of possible events based on a previous state.

1957 Perceptron is a type of linear classifier invented by American psychologist Frank Rosenblatt

that underlies advances in deep learning.

1967 Nearest Neighbor is an algorithm originally designed to map routes. In an ML context it is

used to detect patterns.

1970 Backpropagation is used to train feedforward neural networks.

1982 Recurrent Neural Networks are artificial neural networks derived from feedforward neural

networks that create temporal graphs.

✅  Do a little research. What other dates stand out as pivotal in the history of ML and AI?

1950: Machines that think

Alan Turing, a truly remarkable person who was voted by the public in 2019 as the greatest scientist

of the 20th century, is credited as helping to lay the foundation for the concept of a 'machine that can

think.' He grappled with naysayers and his own need for empirical evidence of this concept in part by

creating the Turing Test, which you will explore in our NLP lessons.

1956: Dartmouth Summer Research Project

"The Dartmouth Summer Research Project on artificial intelligence was a seminal event for artificial

intelligence as a field," and it was here that the term 'artificial intelligence' was coined (source).

https://wikipedia.org/wiki/Timeline_of_machine_learning
https://wikipedia.org/wiki/History_of_artificial_intelligence
https://wikipedia.org/wiki/Bayes%27_theorem
https://wikipedia.org/wiki/Least_squares
https://wikipedia.org/wiki/Markov_chain
https://wikipedia.org/wiki/Perceptron
https://wikipedia.org/wiki/Nearest_neighbor
https://wikipedia.org/wiki/Backpropagation
https://wikipedia.org/wiki/Feedforward_neural_network
https://wikipedia.org/wiki/Recurrent_neural_network
https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century
https://www.bbc.com/news/technology-18475646
https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth


Every aspect of learning or any other feature of intelligence can in principle be so precisely

described that a machine can be made to simulate it.

The lead researcher, mathematics professor John McCarthy, hoped "to proceed on the basis of the

conjecture that every aspect of learning or any other feature of intelligence can in principle be so

precisely described that a machine can be made to simulate it." The participants included another

luminary in the field, Marvin Minsky.

The workshop is credited with having initiated and encouraged several discussions including "the rise

of symbolic methods, systems focussed on limited domains (early expert systems), and deductive

systems versus inductive systems." (source).

1956 - 1974: "The golden years"

From the 1950s through the mid '70s, optimism ran high in the hope that AI could solve many

problems. In 1967, Marvin Minsky stated confidently that "Within a generation ... the problem of

creating 'artificial intelligence' will substantially be solved." (Minsky, Marvin (1967), Computation:

Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)

natural language processing research flourished, search was refined and made more powerful, and

the concept of 'micro-worlds' was created, where simple tasks were completed using plain language

instructions.

Research was well funded by government agencies, advances were made in computation and

algorithms, and prototypes of intelligent machines were built. Some of these machines include:

Shakey the robot, who could maneuver and decide how to perform tasks 'intelligently'.

https://wikipedia.org/wiki/Dartmouth_workshop
https://wikipedia.org/wiki/Shakey_the_robot


Shakey in 1972

Eliza, an early 'chatterbot', could converse with people and act as a primitive 'therapist'. You'll

learn more about Eliza in the NLP lessons.



A version of Eliza, a chatbot

"Blocks world" was an example of a micro-world where blocks could be stacked and sorted, and

experiments in teaching machines to make decisions could be tested. Advances built with libraries

such as SHRDLU helped propel language processing forward.

https://wikipedia.org/wiki/SHRDLU
https://www.youtube.com/watch?v=QAJz4YKUwqw


🎥  Click the image above for a video: Blocks world with SHRDLU

1974 - 1980: "AI Winter"

By the mid 1970s, it had become apparent that the complexity of making 'intelligent machines' had

been understated and that its promise, given the available compute power, had been overblown.

Funding dried up and confidence in the field slowed. Some issues that impacted confidence included:

Limitations. Compute power was too limited.

Combinatorial explosion. The amount of parameters needed to be trained grew exponentially as

more was asked of computers, without a parallel evolution of compute power and capability.

Paucity of data. There was a paucity of data that hindered the process of testing, developing, and

refining algorithms.

Are we asking the right questions?. The very questions that were being asked began to be

questioned. Researchers began to field criticism about their approaches:

Turing tests came into question by means, among other ideas, of the 'chinese room theory'

which posited that, "programming a digital computer may make it appear to understand

language but could not produce real understanding." (source)

The ethics of introducing artificial intelligences such as the "therapist" ELIZA into society was

challenged.

At the same time, various AI schools of thought began to form. A dichotomy was established between

"scruffy" vs. "neat AI" practices. Scruffy labs tweaked programs for hours until they had the desired

results. Neat labs "focused on logic and formal problem solving". ELIZA and SHRDLU were well-

known scruffy systems. In the 1980s, as demand emerged to make ML systems reproducible, the

neat approach gradually took the forefront as its results are more explainable.

1980s Expert systems

As the field grew, its benefit to business became clearer, and in the 1980s so did the proliferation of

'expert systems'. "Expert systems were among the first truly successful forms of artificial intelligence

(AI) software." (source).

This type of system is actually hybrid, consisting partially of a rules engine defining business

requirements, and an inference engine that leveraged the rules system to deduce new facts.

This era also saw increasing attention paid to neural networks.

https://plato.stanford.edu/entries/chinese-room/
https://wikipedia.org/wiki/Neats_and_scruffies
https://wikipedia.org/wiki/Expert_system


1987 - 1993: AI 'Chill'

The proliferation of specialized expert systems hardware had the unfortunate effect of becoming too

specialized. The rise of personal computers also competed with these large, specialized, centralized

systems. The democratization of computing had begun, and it eventually paved the way for the

modern explosion of big data.

1993 - 2011

This epoch saw a new era for ML and AI to be able to solve some of the problems that had been

caused earlier by the lack of data and compute power. The amount of data began to rapidly increase

and become more widely available, for better and for worse, especially with the advent of the

smartphone around 2007. Compute power expanded exponentially, and algorithms evolved

alongside. The field began to gain maturity as the freewheeling days of the past began to crystallize

into a true discipline.

Now

Today, machine learning and AI touch almost every part of our lives. This era calls for careful

understanding of the risks and potentials effects of these algorithms on human lives. As Microsoft's

Brad Smith has stated, "Information technology raises issues that go to the heart of fundamental

human-rights protections like privacy and freedom of expression. These issues heighten

responsibility for tech companies that create these products. In our view, they also call for thoughtful

government regulation and for the development of norms around acceptable uses" (source).

It remains to be seen what the future holds, but it is important to understand these computer systems

and the software and algorithms that they run. We hope that this curriculum will help you to gain a

better understanding so that you can decide for yourself.

https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/


🎥  Click the image above for a video: Yann LeCun discusses the history of deep learning in

this lecture

🚀Challenge

Dig into one of these historical moments and learn more about the people behind them. There are

fascinating characters, and no scientific discovery was ever created in a cultural vacuum. What do

you discover?

Post-lecture quiz

Review & Self Study

Here are items to watch and listen to:

This podcast where Amy Boyd discusses the evolution of AI

https://www.youtube.com/watch?v=mTtDfKgLm54
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/4/
http://runasradio.com/Shows/Show/739


Assignment

Create a timeline

Fairness in Machine Learning

https://www.youtube.com/watch?v=EJt3_bFYKss


Sketchnote by Tomomi Imura

Pre-lecture quiz

Introduction

In this curriculum, you will start to discover how machine learning can and is impacting our everyday

lives. Even now, systems and models are involved in daily decision-making tasks, such as health care

diagnoses or detecting fraud. So it is important that these models work well in order to provide fair

outcomes for everyone.

Imagine what can happen when the data you are using to build these models lacks certain

demographics, such as race, gender, political view, religion, or disproportionally represents such

demographics. What about when the model's output is interpreted to favor some demographic?

What is the consequence for the application?

In this lesson, you will:

https://www.twitter.com/girlie_mac
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/5/


Raise your awareness of the importance of fairness in machine learning.

Learn about fairness-related harms.

Learn about unfairness assessment and mitigation.

Prerequisite

As a prerequisite, please take the "Responsible AI Principles" Learn Path and watch the video below

on the topic:

Learn more about Responsible AI by following this Learning Path

🎥  Click the image above for a video: Microsoft's Approach to Responsible AI

Unfairness in data and algorithms

"If you torture the data long enough, it will confess to anything - Ronald Coase

This statement sounds extreme, but it is true that data can be manipulated to support any

conclusion. Such manipulation can sometimes happen unintentionally. As humans, we all have bias,

https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa
https://youtu.be/dnC8-uUZXSc


and it's often difficult to consciously know when you are introducing bias in data.

Guaranteeing fairness in AI and machine learning remains a complex sociotechnical challenge.

Meaning that it cannot be addressed from either purely social or technical perspectives.

Fairness-related harms

What do you mean by unfairness? "Unfairness" encompasses negative impacts, or "harms", for a

group of people, such as those defined in terms of race, gender, age, or disability status.

The main fairness-related harms can be classified as:

Allocation, if a gender or ethnicity for example is favored over another.

Quality of service. If you train the data for one specific scenario but reality is much more

complex, it leads to a poor performing service.

Stereotyping. Associating a given group with pre-assigned attributes.

Denigration. To unfairly criticize and label something or someone.

Over- or under- representation. The idea is that a certain group is not seen in a certain

profession, and any service or function that keeps promoting that is contributing to harm.

Let s̓ take a look at the examples.

Allocation

Consider a hypothetical system for screening loan applications. The system tends to pick white men

as better candidates over other groups. As a result, loans are withheld from certain applicants.

Another example would be an experimental hiring tool developed by a large corporation to screen

candidates. The tool systemically discriminated against one gender by using the models were trained

to prefer words associated with another. It resulted in penalizing candidates whose resumes contain

words such as "women s̓ rugby team".

✅  Do a little research to find a real-world example of something like this

Quality of Service

Researchers found that several commercial gender classifiers had higher error rates around images

of women with darker skin tones as opposed to images of men with lighter skin tones. Reference

Another infamous example is a hand soap dispenser that could not seem to be able to sense people

with dark skin. Reference

https://www.media.mit.edu/publications/gender-shades-intersectional-accuracy-disparities-in-commercial-gender-classification/
https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773


Stereotyping

Stereotypical gender view was found in machine translation. When translating “he is a nurse and she

is a doctor” into Turkish, problems were encountered. Turkish is a genderless language which has

one pronoun, “o” to convey a singular third person, but translating the sentence back from Turkish to

English yields the stereotypical and incorrect as “she is a nurse and he is a doctor”.

Denigration

An image labeling technology infamously mislabeled images of dark-skinned people as gorillas.

Mislabeling is harmful not just because the system made a mistake because it specifically applied a

label that has a long history of being purposefully used to denigrate Black people.



🎥  Click the image above for a video: AI, Ain't I a Woman - a performance showing the harm

caused by racist denigration by AI

Over- or under- representation

Skewed image search results can be a good example of this harm. When searching images of

professions with an equal or higher percentage of men than women, such as engineering, or CEO,

watch for results that are more heavily skewed towards a given gender.

This search on Bing for 'CEO' produces pretty inclusive results

https://www.youtube.com/watch?v=QxuyfWoVV98


These five main types of harms are not mutually exclusive, and a single system can exhibit more than

one type of harm. In addition, each case varies in its severity. For instance, unfairly labeling someone

as a criminal is a much more severe harm than mislabeling an image. It's important, however, to

remember that even relatively non-severe harms can make people feel alienated or singled out and

the cumulative impact can be extremely oppressive.

✅  Discussion: Revisit some of the examples and see if they show different harms.

Allocation
Quality of

service
Stereotyping Denigration

Over- or under-

representation

Automated hiring

system
x x x x

Machine

translation

Photo labeling

Detecting unfairness

There are many reasons why a given system behaves unfairly. Social biases, for example, might be

reflected in the datasets used to train them. For example, hiring unfairness might have been

exacerbated by over reliance on historical data. By using the patterns in resumes submitted to the

company over a 10-year period, the model determined that men were more qualified because the

majority of resumes came from men, a reflection of past male dominance across the tech industry.

Inadequate data about a certain group of people can be the reason for unfairness. For example,

image classifiers a have higher rate of error for images of dark-skinned people because darker skin

tones were underrepresented in the data.

Wrong assumptions made during development cause unfairness too. For example, a facial analysis

system intended to predict who is going to commit a crime based on images of people s̓ faces can

lead to damaging assumptions. This could lead to substantial harms for people who are misclassified.

Understand your models and build in fairness



Although many aspects of fairness are not captured in quantitative fairness metrics, and it is not

possible to fully remove bias from a system to guarantee fairness, you are still responsible to detect

and to mitigate fairness issues as much as possible.

When you are working with machine learning models, it is important to understand your models by

means of assuring their interpretability and by assessing and mitigating unfairness.

Let s̓ use the loan selection example to isolate the case to figure out each factor's level of impact on

the prediction.

Assessment methods

1. Identify harms (and benefits). The first step is to identify harms and benefits. Think about how

actions and decisions can affect both potential customers and a business itself.

2. Identify the affected groups. Once you understand what kind of harms or benefits that can

occur, identify the groups that may be affected. Are these groups defined by gender, ethnicity, or

social group?

3. Define fairness metrics. Finally, define a metric so you have something to measure against in

your work to improve the situation.

Identify harms (and benefits)

What are the harms and benefits associated with lending? Think about false negatives and false

positive scenarios:

False negatives (reject, but Y=1) - in this case, an applicant who will be capable of repaying a loan is

rejected. This is an adverse event because the resources of the loans are withheld from qualified

applicants.

False positives (accept, but Y=0) - in this case, the applicant does get a loan but eventually defaults.

As a result, the applicant's case will be sent to a debt collection agency which can affect their future

loan applications.

Identify affected groups

The next step is to determine which groups are likely to be affected. For example, in case of a credit

card application, a model might determine that women should receive much lower credit limits

compared with their spouses who share household assets. An entire demographic, defined by

gender, is thereby affected.



Define fairness metrics

You have identified harms and an affected group, in this case, delineated by gender. Now, use the

quantified factors to disaggregate their metrics. For example, using the data below, you can see that

women have the largest false positive rate and men have the smallest, and that the opposite is true

for false negatives.

✅  In a future lesson on Clustering, you will see how to build this 'confusion matrix' in code

False positive rate False negative rate count

Women 0.37 0.27 54032

Men 0.31 0.35 28620

Non-binary 0.33 0.31 1266

This table tells us several things. First, we note that there are comparatively few non-binary people in

the data. The data is skewed, so you need to be careful how you interpret these numbers.

In this case, we have 3 groups and 2 metrics. When we are thinking about how our system affects the

group of customers with their loan applicants, this may be sufficient, but when you want to define

larger number of groups, you may want to distill this to smaller sets of summaries. To do that, you can

add more metrics, such as the largest difference or smallest ratio of each false negative and false

positive.

✅  Stop and Think: What other groups are likely to be affected for loan application?

Mitigating unfairness

To mitigate unfairness, explore the model to generate various mitigated models and compare the

tradeoffs it makes between accuracy and fairness to select the most fair model.

This introductory lesson does not dive deeply into the details of algorithmic unfairness mitigation,

such as post-processing and reductions approach, but here is a tool that you may want to try.

Fairlearn

Fairlearn is an open-source Python package that allows you to assess your systems' fairness and

mitigate unfairness.

https://fairlearn.github.io/


The tool helps you to assesses how a model's predictions affect different groups, enabling you to

compare multiple models by using fairness and performance metrics, and supplying a set of

algorithms to mitigate unfairness in binary classification and regression.

Learn how to use the different components by checking out the Fairlearn's GitHub

Explore the user guide, examples

Try some sample notebooks.

Learn how to enable fairness assessments of machine learning models in Azure Machine

Learning.

Check out these sample notebooks for more fairness assessment scenarios in Azure Machine

Learning.

🚀 Challenge

To prevent biases from being introduced in the first place, we should:

have a diversity of backgrounds and perspectives among the people working on systems

invest in datasets that reflect the diversity of our society

develop better methods for detecting and correcting bias when it occurs

Think about real-life scenarios where unfairness is evident in model-building and usage. What else

should we consider?

Post-lecture quiz

Review & Self Study

In this lesson, you have learned some basics of the concepts of fairness and unfairness in machine

learning.

Watch this workshop to dive deeper into the topics:

YouTube: Fairness-related harms in AI systems: Examples, assessment, and mitigation by Hanna

Wallach and Miro Dudik Fairness-related harms in AI systems: Examples, assessment, and

https://github.com/fairlearn/fairlearn/
https://fairlearn.github.io/main/user_guide/index.html
https://fairlearn.github.io/main/auto_examples/index.html
https://github.com/fairlearn/fairlearn/tree/master/notebooks
https://docs.microsoft.com/azure/machine-learning/how-to-machine-learning-fairness-aml?WT.mc_id=academic-15963-cxa
https://github.com/Azure/MachineLearningNotebooks/tree/master/contrib/fairness
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/6/
https://www.youtube.com/watch?v=1RptHwfkx_k


mitigation - YouTube

Also, read:

Microsoft s̓ RAI resource center: Responsible AI Resources – Microsoft AI

Microsoft s̓ FATE research group: FATE: Fairness, Accountability, Transparency, and Ethics in AI -

Microsoft Research

Explore the Fairlearn toolkit

Fairlearn

Read about Azure Machine Learning's tools to ensure fairness

Azure Machine Learning

Assignment

Explore Fairlearn

Techniques of machine learning
The process of building, using, and maintaining machine learning models and the data they use is a

process very different from many other development workflows. For web developers, techniques of

machine learning can initially seem very strange. In this lesson, we will demystify the process by

outlining it. You will:

Understand the processes underpinning machine learning at a high level.

Explore base concepts such as 'models', 'predictions', and 'training data'.

Pre-lecture quiz

Introduction
On a high level, the craft of creating machine learning (ML) processes is comprised of a number of

steps:

1. Decide on the question. Most ML processes start by asking a question that cannot be answered

by a simple conditional program or rules-based engine. These questions often revolve around

https://www.youtube.com/watch?v=1RptHwfkx_k
https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4
https://www.microsoft.com/research/theme/fate/
https://fairlearn.org/
https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-15963-cxa
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/7/


predictions based on a collection of data.

2. Collect and prepare data. To be able to answer your question, you need data. The quality and,

sometimes, quantity of your data will determine how well you can answer your initial question.

Visualizing data is an important aspect of this phase. This phase also includes splitting the data

into a training and testing group to build a model.

3. Choose a training method. Depending on your question and the nature of your data, you need to

choose how you want to train a model to best reflect your data and make accurate predictions

against it. This is the part of your ML process that requires specific expertise and, often, a

considerably amount of experimentation.

4. Train the model. Using your training data, you use various algorithms to train a model to

recognize patterns in the data. The model might leverage internal weights that can be adjusted to

privilege certain parts of the data over others to build a better model.

5. Evaluate the model. You use never before seen data (your testing data) from your collected set to

see how the model is performing.

6. Parameter tuning. Based on the performance of your model, you can redo the process using

different parameters, or variables, that control the behavior of the algorithms used to train the

model.

7. Predict. Use new input to test the accuracy of your model.

What question to ask

Computers are particularly skilled at discovering hidden patterns in data. This utility is very helpful for

researchers who have questions about a given domain that cannot be easily answered by creating a

conditionally-based rules engine. Given an actuarial task, for example, a data scientist might be able

to construct handcrafted rules around the mortality of smokers vs non-smokers.

When many other variables are brought into the equation, however, a ML model might prove more

efficient to predict future mortality rates based on past health history. A more cheerful example might

be making weather predictions for the month of April in a given location based on data that includes

latitude, longitude, climate change, proximity to the ocean, patterns of the jet stream, and more.

✅  This slide deck on weather models offers a historical perspective for using ML in weather analysis

Pre-Building Tasks

Before starting to build your model, there are several tasks you need to complete. To test your

question and form a hypothesis based on a model's predictions, you need to identify and configure

several elements.

https://www2.cisl.ucar.edu/sites/default/files/0900%20June%2024%20Haupt_0.pdf


Data

To be able to answer your question with any kind of certainty, you need a good amount of data of the

right type. There are two things you need to do at this point:

Collect data. Keeping in mind the previous lesson on fairness in data analysis, collect your data

with care. Be aware of the sources of this data, any inherent biases it might have, and document

its origin.

Prepare data. There are several steps in the data preparation process. You might need to collate

data and normalize it if it comes from diverse sources. You can improve the data's quality and

quantity through various methods such as converting strings to numbers (as we do in Clustering).

You might also generate new data, based on the original (as we do in Classification). You can

clean and edit the data (as we did prior to the Web App lesson). Finally you might also need to

randomize it and shuffle it, depending on your training techniques.

✅  After collecting and processing your data, take a moment to see if its shape will allow you to

address your intended question. It may be that the data will not perform well in your given task, as we

discover in our Clustering lessons!

Selecting your feature variable

A feature is a measurable property of your data. In many datasets it is expressed as a column heading

like 'date' 'size' or 'color'. Your feature variable, usually represented as y  in code, represents the

answer to the question you are trying to ask of your data: in December, what color pumpkins will be

cheapest? in San Francisco, what neighborhoods will have the best real estate price?

🎓  Feature Selection and Feature Extraction How do you know which variable to choose when

building a model? You'll probably go through a process of feature selection or feature extraction to

choose the right variables for the most performant model. They're not the same thing, however:

"Feature extraction creates new features from functions of the original features, whereas feature

selection returns a subset of the features." source

Visualize your data

An important aspect of the data scientist's toolkit is the power to visualize data using several

excellent libraries such as Seaborn or MatPlotLib. Representing your data visually might allow you to

uncover hidden correlations that you can leverage. Your visualizations might also help you to uncover

bias or unbalanced data (as we discover in Classification).

Split your dataset

https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection
https://wikipedia.org/wiki/Feature_selection


Prior to training, you need to split your dataset into two or more parts of unequal size, but

representing the data well.

Training, this part of the dataset goes into your model to train it. The size of this chunk

constitutes the majority of the original dataset.

Testing. A test dataset is another independent group of data, often gathered from the original

data, that you use to confirm the performance of the built model.

Validating. A validation set is a smaller independent group of examples that you use to tune the

model's hyperparameters, or architecture, to improve the model. Depending on your data's size

and the question you are asking, you might not need to build this third set (as we note in Time

Series Forecasting).

Building a model

Using your training data, your goal is to build a model, or a statistical representation of your data,

using various algorithms to train it. Training a model exposes it to data and allows it to make

assumptions about perceived patterns it discovers, validates, and accepts or rejects.

Decide on a training method

Depending on your question and the nature of your data, your will choose a method to train it.

Stepping through Scikit-learn's documentation - which we use in this course - , you can explore

many ways to train a model. Depending on your experience, you might have to try several different

methods to build the best model. You are likely to go through a process whereby data scientists

evaluate the performance of a model by feeding it unseen data, checking for accuracy, bias, and

other quality-degrading issues, selecting the most appropriate training method for the task at hand.

Train

Armed with your training data, you are ready to 'fit' it to create a model. You will notice that in many

ML libraries you will find the code 'model.fit' - it is at this time that you send in your data as an array

of values (usually 'X') and a feature variable (usually 'y').

Evaluate the model

Once the training process is complete (it can take many iterations, or 'epochs', to train a large model),

you will be able to evaluate the model's quality by using test data to gauge its performance. This data

https://scikit-learn.org/stable/user_guide.html


is a subset of the original data that the model has not previously analyzed. You can print out a table of

metrics about your model's quality.

🎓  Model fitting

In the context of machine learning, Model fitting refers to the accuracy of the model's underlying

function as it attempts to analyze data with which it is not familiar.

🎓  Underfitting and overfitting are common problems that degrade the quality of the model as the

model fits either not well enough or too well. This causes the model to make predictions either too

closely aligned or too loosely aligned with its training data. An overfit model predicts training data too

well because it has learned the data's details and noise too well. An underfit model is not accurate as

it can neither accurately analyze its training data nor data it has not yet 'seen'.

Parameter tuning

Once your initial training is complete, observe the quality of the model and consider improving it by

tweaking its 'hyperparameters'. Read more about the process here.

Prediction

This is the moment where you can use completely new data to test your model's accuracy. In an

'applied' ML setting, where you are building web assets to use the model in production, this process

might involve gathering user input (a button press, for example) to set a variable and send it to the

model for inference, or evaluation.

In these lessons, you will discover how to use these steps to prepare, build, test, evaluate, and predict

- all the gestures of a data scientist and more, as you progress in your journey to become a 'full stack'

ML engineer.

🚀Challenge

Draw a flow chart reflecting the steps of a ML practitioner. Where do you see yourself right now in the

process? Where do you predict you will find difficulty? What seems easy to you?

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-15963-cxa


Post-lecture quiz

Review & Self Study

Search online for interviews with data scientists who discuss their daily work. Here is one.

Assignment

Interview a data scientist

Get started with Python and Scikit-learn

for regression models

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/8/
https://www.youtube.com/watch?v=Z3IjgbbCEfs


Sketchnote by Tomomi Imura

Pre-lecture quiz

Introduction

In these four lessons, you will discover how to build regression models. We will discuss what these

are for shortly. But before you do anything, make sure you have the right tools in place to start the

process!

In this lesson, you will learn how to:

Configure your computer for local machine learning tasks.

Work with Jupyter notebooks.

Use Scikit-learn, including installation.

Explore linear regression with a hands-on exercise.

Installations and configurations

https://www.twitter.com/girlie_mac
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/9/
https://youtu.be/7EXd4_ttIuw


🎥  Click the image above for a video: using Python within VS Code.

1. Install Python. Ensure that Python is installed on your computer. You will use Python for many

data science and machine learning tasks. Most computer systems already include a Python

installation. There are useful Python Coding Packs available as well, to ease the setup for some

users.

Some usages of Python, however, require one version of the software, whereas others require a

different version. For this reason, it's useful to work within a virtual environment.

2. Install Visual Studio Code. Make sure you have Visual Studio Code installed on your computer.

Follow these instructions to install Visual Studio Code for the basic installation. You are going to

use Python in Visual Studio Code in this course, so you might want to brush up on how to

configure Visual Studio Code for Python development.

Get comfortable with Python by working through this collection of Learn modules

3. Install Scikit-learn, by following these instructions. Since you need to ensure that you use Python

3, it's recommended that you use a virtual environment. Note, if you are installing this library on a

M1 Mac, there are special instructions on the page linked above.

4. Install Jupyter Notebook. You will need to install the Jupyter package.

Your ML authoring environment

You are going to use notebooks to develop your Python code and create machine learning models.

This type of file is a common tool for data scientists, and they can be identified by their suffix or

extension .ipynb .

Notebooks are an interactive environment that allow the developer to both code and add notes and

write documentation around the code which is quite helpful for experimental or research-oriented

projects.

Exercise - work with a notebook

In this folder, you will find the file notebook.ipynb.

https://www.python.org/downloads/
https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-15963-cxa
https://docs.python.org/3/library/venv.html
https://code.visualstudio.com/
https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-15963-cxa
https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-15963-cxa
https://scikit-learn.org/stable/install.html
https://pypi.org/project/jupyter/


1. Open notebook.ipynb in Visual Studio Code.

A Jupyter server will start with Python 3+ started. You will find areas of the notebook that can be

run , pieces of code. You can run a code block, by selecting the icon that looks like a play

button.

2. Select the md  icon and add a bit of markdown, and the following text # Welcome to your

notebook.

Next, add some Python code.

3. Type print("hello notebook'") in the code block.

4. Select the arrow to run the code.

You should see the printed statement:

You can interleaf your code with comments to self-document the notebook.

✅  Think for a minute how different a web developer's working environment is versus that of a data

scientist.

Up and running with Scikit-learn

hello notebook
output



Now that Python is set up in your local environment, and you are comfortable with Jupyter

notebooks, let's get equally comfortable with Scikit-learn (pronounce it sci  as in science ).

Scikit-learn provides an extensive API to help you perform ML tasks.

According to their website, "Scikit-learn is an open source machine learning library that supports

supervised and unsupervised learning. It also provides various tools for model fitting, data

preprocessing, model selection and evaluation, and many other utilities."

In this course, you will use Scikit-learn and other tools to build machine learning models to perform

what we call 'traditional machine learning' tasks. We have deliberately avoided neural networks and

deep learning, as they are better covered in our forthcoming 'AI for Beginners' curriculum.

Scikit-learn makes it straightforward to build models and evaluate them for use. It is primarily focused

on using numeric data and contains several ready-made datasets for use as learning tools. It also

includes pre-built models for students to try. Let's explore the process of loading prepackaged data

and using a built in estimator first ML model with Scikit-learn with some basic data.

Exercise - your first Scikit-learn notebook

This tutorial was inspired by the linear regression example on Scikit-learn's web site.

In the notebook.ipynb file associated to this lesson, clear out all the cells by pressing the 'trash can'

icon.

In this section, you will work with a small dataset about diabetes that is built into Scikit-learn for

learning purposes. Imagine that you wanted to test a treatment for diabetic patients. Machine

Learning models might help you determine which patients would respond better to the treatment,

based on combinations of variables. Even a very basic regression model, when visualized, might

show information about variables that would help you organize your theoretical clinical trials.

✅  There are many types of regression methods, and which one you pick depends on the answer

you're looking for. If you want to predict the probable height for a person of a given age, you'd use

linear regression, as you're seeking a numeric value. If you're interested in discovering whether a

type of cuisine should be considered vegan or not, you're looking for a category assignment so you

would use logistic regression. You'll learn more about logistic regression later. Think a bit about some

questions you can ask of data, and which of these methods would be more appropriate.

Let's get started on this task.

https://scikit-learn.org/stable/modules/classes.html#api-ref
https://scikit-learn.org/stable/getting_started.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py


Import libraries

For this task we will import some libraries:

matplotlib. It's a useful graphing tool and we will use it to create a line plot.

numpy. numpy is a useful library for handling numeric data in Python.

sklearn. This is the Scikit-learn library.

Import some libraries to help with your tasks.

1. Add imports by typing the following code:

Above you are importing matplottlib , numpy  and you are importing datasets ,

linear_model  and model_selection  from sklearn . model_selection  is used for

splitting data into training and test sets.

The diabetes dataset

The built-in diabetes dataset includes 442 samples of data around diabetes, with 10 feature

variables, some of which include:

age: age in years bmi: body mass index bp: average blood pressure s1 tc: T-Cells (a type of white

blood cells)

✅  This dataset includes the concept of 'sex' as a feature variable important to research around

diabetes. Many medical datasets include this type of binary classification. Think a bit about how

categorizations such as this might exclude certain parts of a population from treatments.

Now, load up the X and y data.

🎓  Remember, this is supervised learning, and we need a named 'y' target.

In a new code cell, load the diabetes dataset by calling load_diabetes() . The input

return_X_y=True  signals that X  will be a data matrix, and y  will be the regression target.

1. Add some print commands to show the shape of the data matrix and its first element:

import matplotlib.pyplot as plt 
import numpy as np 
from sklearn import datasets, linear_model, model_selection

python

https://matplotlib.org/
https://numpy.org/doc/stable/user/whatisnumpy.html
https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset


What you are getting back as a response, is a tuple. What you are doing is to assign the two first

values of the tuple to X  and y  respectively. Learn more about tuples.

You can see that this data has 442 items shaped in arrays of 10 elements:

✅  Think a bit about the relationship between the data and the regression target. Linear

regression predicts relationships between feature X and target variable y. Can you find the target

for the diabetes dataset in the documentation? What is this dataset demonstrating, given that

target?

2. Next, select a portion of this dataset to plot by arranging it into a new array using numpy's

newaxis  function. We are going to use linear regression to generate a line between values in

this data, according to a pattern it determines.

✅  At any time, print out the data to check its shape.

3. Now that you have data ready to be plotted, you can see if a machine can help determine a logical

split between the numbers in this dataset. To do this, you need to split both the data (X) and the

target (y) into test and training sets. Scikit-learn has a straightforward way to do this; you can split

your test data at a given point.

4. Now you are ready to train your model! Load up the linear regression model and train it with your X

and y training sets using model.fit() :

X, y = datasets.load_diabetes(return_X_y=True) 
print(X.shape) 
print(X[0])

python

(442, 10) 
[ 0.03807591  0.05068012  0.06169621  0.02187235 -0.0442235  -0.03482076
-0.04340085 -0.00259226  0.01990842 -0.01764613]

text

X = X[:, np.newaxis, 2]
python

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y
python

model = linear_model.LinearRegression() 
model.fit(X_train, y_train)

python

https://wikipedia.org/wiki/Tuple
https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset


✅  model.fit()  is a function you'll see in many ML libraries such as TensorFlow

5. Then, create a prediction using test data, using the function predict() . This will be used to

draw the line between data groups

6. Now it's time to show the data in a plot. Matplotlib is a very useful tool for this task. Create a

scatterplot of all the X and y test data, and use the prediction to draw a line in the most

appropriate place, between the model's data groupings.

✅  Think a bit about what's going on here. A straight line is running through many small dots of

data, but what is it doing exactly? Can you see how you should be able to use this line to predict

where a new, unseen data point should fit in relationship to the plot's y axis? Try to put into words

the practical use of this model.

Congratulations, you built your first linear regression model, created a prediction with it, and

displayed it in a plot!

y_pred = model.predict(X_test)
python

plt.scatter(X_test, y_test,  color='black') 
plt.plot(X_test, y_pred, color='blue', linewidth=3) 
plt.show()

python



🚀Challenge

Plot a different variable from this dataset. Hint: edit this line: X = X[:, np.newaxis, 2] . Given

this dataset's target, what are you able to discover about the progression of diabetes as a disease?

Post-lecture quiz

Review & Self Study

In this tutorial, you worked with simple linear regression, rather than univariate or multiple linear

regression. Read a little about the differences between these methods, or take a look at this video

Read more about the concept of regression and think about what kinds of questions can be

answered by this technique. Take this tutorial to deepen your understanding.

Assignment

A different dataset

Build a regression model using Scikit-

learn: prepare and visualize data

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/10/
https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef
https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-15963-cxa


Infographic by Dasani Madipalli

Pre-lecture quiz

Introduction

Now that you are set up with the tools you need to start tackling machine learning model building

with Scikit-learn, you are ready to start asking questions of your data. As you work with data and

apply ML solutions, it's very important to understand how to ask the right question to properly unlock

the potentials of your dataset.

In this lesson, you will learn:

How to prepare your data for model-building.

How to use Matplotlib for data visualization.

Asking the right question of your data

https://twitter.com/dasani_decoded
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/11/


The question you need answered will determine what type of ML algorithms you will leverage. And

the quality of the answer you get back will be heavily dependent on the nature of your data.

Take a look at the data provided for this lesson. You can open this .csv file in VS Code. A quick skim

immediately shows that there are blanks and a mix of strings and numeric data. There's also a

strange column called 'Package' where the data is a mix between 'sacks', 'bins' and other values. The

data, in fact, is a bit of a mess.

In fact, it is not very common to be gifted a dataset that is completely ready to use to create a ML

model out of the box. In this lesson, you will learn how to prepare a raw dataset using standard

Python libraries. You will also learn various techniques to visualize the data.

Case study: 'the pumpkin market'

In this folder you will find a .csv file in the root data  folder called US-pumpkins.csv which includes

1757 lines of data about the market for pumpkins, sorted into groupings by city. This is raw data

extracted from the Specialty Crops Terminal Markets Standard Reports distributed by the United

States Department of Agriculture.

Preparing data

This data is in the public domain. It can be downloaded in many separate files, per city, from the

USDA web site. To avoid too many separate files, we have concatenated all the city data into one

spreadsheet, thus we have already prepared the data a bit. Next, let's take a closer look at the data.

The pumpkin data - early conclusions

What do you notice about this data? You already saw that there is a mix of strings, numbers, blanks

and strange values that you need to make sense of.

What question can you ask of this data, using a Regression technique? What about "Predict the price

of a pumpkin for sale during a given month". Looking again at the data, there are some changes you

need to make to create the data structure necessary for the task.

Exercise - analyze the pumpkin data

Let's use Pandas, (the name stands for Python Data Analysis ) a tool very useful for shaping

data, to analyze and prepare this pumpkin data.

https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice
https://pandas.pydata.org/


First, check for missing dates

You will first need to take steps to check for missing dates:

1. Convert the dates to a month format (these are US dates, so the format is MM/DD/YYYY ).

2. Extract the month to a new column.

Open the notebook.ipynb file in Visual Studio Code and import the spreadsheet in to a new Pandas

dataframe.

1. Use the head()  function to view the first five rows.

✅  What function would you use to view the last five rows?

2. Check if there is missing data in the current dataframe:

There is missing data, but maybe it won't matter for the task at hand.

3. To make your dataframe easier to work with, drop several of its columns, using drop() ,

keeping only the columns you need:

Second, determine average price of pumpkin

Think about how to determine the average price of a pumpkin in a given month. What columns would

you pick for this task? Hint: you'll need 3 columns.

Solution: take the average of the Low Price  and High Price  columns to populate the new

Price column, and convert the Date column to only show the month. Fortunately, according to the

check above, there is no missing data for dates or prices.

1. To calculate the average, add the following code:

import pandas as pd 
pumpkins = pd.read_csv('../../data/US-pumpkins.csv') 
pumpkins.head()

python

pumpkins.isnull().sum()
python

new_columns = ['Package', 'Month', 'Low Price', 'High Price', 'Date'] 
pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_co

python



✅  Feel free to print any data you'd like to check using print(month) .

2. Now, copy your converted data into a fresh Pandas dataframe:

Printing out your dataframe will show you a clean, tidy dataset on which you can build your new

regression model.

But wait! There's something odd here

If you look at the Package  column, pumpkins are sold in many different configurations. Some are

sold in '1 1/9 bushel' measures, and some in '1/2 bushel' measures, some per pumpkin, some per

pound, and some in big boxes with varying widths.

Pumpkins seem very hard to weigh consistently

Digging into the original data, it's interesting that anything with Unit of Sale  equalling 'EACH' or

'PER BIN' also have the Package  type per inch, per bin, or 'each'. Pumpkins seem to be very hard

to weigh consistently, so let's filter them by selecting only pumpkins with the string 'bushel' in their

Package  column.

1. Add a filter at the top of the file, under the initial .csv import:

If you print the data now, you can see that you are only getting the 415 or so rows of data

containing pumpkins by the bushel.

But wait! There's one more thing to do

price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 
 
month = pd.DatetimeIndex(pumpkins['Date']).month 

python

new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Packag
python

pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True
python



Did you notice that the bushel amount varies per row? You need to normalize the pricing so that you

show the pricing per bushel, so do some math to standardize it.

1. Add these lines after the block creating the new_pumpkins dataframe:

✅  According to The Spruce Eats, a bushel's weight depends on the type of produce, as it's a volume

measurement. "A bushel of tomatoes, for example, is supposed to weigh 56 pounds... Leaves and

greens take up more space with less weight, so a bushel of spinach is only 20 pounds." It's all pretty

complicated! Let's not bother with making a bushel-to-pound conversion, and instead price by the

bushel. All this study of bushels of pumpkins, however, goes to show how very important it is to

understand the nature of your data!

Now, you can analyze the pricing per unit based on their bushel measurement. If you print out the

data one more time, you can see how it's standardized.

✅  Did you notice that pumpkins sold by the half-bushel are very expensive? Can you figure out why?

Hint: little pumpkins are way pricier than big ones, probably because there are so many more of them

per bushel, given the unused space taken by one big hollow pie pumpkin.

Visualization Strategies

Part of the data scientist's role is to demonstrate the quality and nature of the data they are working

with. To do this, they often create interesting visualizations, or plots, graphs, and charts, showing

different aspects of data. In this way, they are able to visually show relationships and gaps that are

otherwise hard to uncover.

Visualizations can also help determine the machine learning technique most appropriate for the data.

A scatterplot that seems to follow a line, for example, indicates that the data is a good candidate for a

linear regression exercise.

One data visualization libary that works well in Jupyter notebooks is Matplotlib (which you also saw in

the previous lesson).

Get more experience with data visualization in these tutorials.

new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price']
 
new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] =

python

https://www.thespruceeats.com/how-much-is-a-bushel-1389308
https://matplotlib.org/
https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-15963-cxa


Exercise - experiment with Matplotlib

Try to create some basic plots to display the new dataframe you just created. What would a basic line

plot show?

1. Import Matplotlib at the top of the file, under the Pandas import:

2. Rerun the entire notebook to refresh.

3. At the bottom of the notebook, add a cell to plot the data as a box:

Is this a useful plot? Does anything about it surprise you?

It's not particularly useful as all it does is display in your data as a spread of points in a given

month.

import matplotlib.pyplot as plt
python

price = new_pumpkins.Price 
month = new_pumpkins.Month 
plt.scatter(price, month) 
plt.show()

python



Make it useful

To get charts to display useful data, you usually need to group the data somehow. Let's try creating a

plot where the y axis shows the months and the data demonstrates the distribution of data.

1. Add a cell to create a grouped bar chart:

This is a more useful data visualization! It seems to indicate that the highest price for pumpkins

occurs in September and October. Does that meet your expectation? Why or why not?

🚀Challenge

Explore the different types of visualization that M Matplotlib offers. Which types are most appropriate

for regression problems?

new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') 
plt.ylabel("Pumpkin Price")

python



Post-lecture quiz

Review & Self Study

Take a look at the many ways to visualize data. Make a list of the various libraries available and note

which are best for given types of tasks, for example 2D visualizations vs. 3D visualizations. What do

you discover?

Assignment

Exploring visualization

Build a regression model using Scikit-

learn: regression two ways

Infographic by Dasani Madipalli

Pre-lecture quiz

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/12/
https://twitter.com/dasani_decoded
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/13/


Introduction

So far you have explored what regression is with sample data gathered from the pumpkin pricing

dataset that we will use throughout this unit. You have also visualized it using Matplotlib. Now you are

ready to dive deeper into regression for ML. In this lesson, you will learn more about two types of

regression: basic linear regression and polynomial regression, along with some of the math

underlying these techniques.

Throughout this curriculum, we assume minimal knowledge of math, and seek to make it

accessible for students coming from other fields, so watch for notes, callouts, diagrams, and

other learning tools to aid in comprehension.

Prerequisite

You should be familiar by now with the structure of the pumpkin data that we are examining. You can

find it preloaded and pre-cleaned in this lesson's notebook.ipynb file, with the pumpkin price

displayed per bushel in a new dataframe. Make sure you can run these notebooks in kernels in VS

Code.

Preparation

As a reminder, you are loading this data so as to ask questions of it. When is the best time to buy

pumpkins? What price can I expect of a case of miniature pumpkins? Should I buy them in half-

bushel baskets or by the 1 1/9 bushel box? Let's keep digging into this data.

In the previous lesson, you created a Pandas dataframe and populated it with part of the original

dataset, standardizing the pricing by the bushel. By doing that, however, you were only able to gather

about 400 datapoints and only for the fall months.

Take a look at the data that we preloaded in this lesson's accompanying notebook. The data is

preloaded and an initial scatterplot is charted to show month data. Maybe we can get a little more

detail about the nature of the data by cleaning it more.

A linear regression line

As you learned in Lesson 1, the goal of a linear regression exercise is to be able to plot a line to show

the relationship between variables and make accurate predictions on where a new datapoint would



fall in relationship to that line.

🧮  Show me the math

This line has an equation: Y = a + bX . It is typical of Least-Squares Regression to draw

this type of line.

X  is the 'explanatory variable'. Y  is the 'dependent variable'. The slope of the line is b

and a  is the y-intercept, which refers to the value of Y  when X = 0 .

In other words, and referring to our pumpkin data's original question: "predict the price of a

pumpkin per bushel by month", X  would refer to the price and Y  would refer to the month

of sale. The math that calculates the line must demonstrate the slope of the line, which is also

dependent on the intercept, or where Y  is situated when X = 0 .

You can observe the method of calculation for these values on the Math is Fun web site.

A common method of regression is Least-Squares Regression which means that all the

datapoints surrounding the regression line are squared and then added up. Ideally, that final

sum is as small as possible, because we want a low number of errors, or least-squares .

We do so since we want to model a line that has the least cumulative distance from all of our

data points. We also square the terms before adding them since we are concerned with its

magnitude rather than its direction.

One more term to understand is the Correlation Coefficient between given X and Y variables.

For a scatterplot, you can quickly visualize this coefficient. A plot with datapoints scattered in

a neat line have high correlation, but a plot with datapoints scattered everywhere between X

and Y have a low correlation.

A good linear regression model will be one that has a high (nearer to 1 than 0) Correlation

Coefficient using the Least-Squares Regression method with a line of regression.

✅  Run the notebook accompanying this lesson and look at the City to Price scatterplot. Does the

data associating City to Price for pumpkin sales seem to have high or low correlation, according to

your visual interpretation of the scatterplot?

Create a Linear Regression Model correlating Pumpkin

Datapoints

https://www.mathsisfun.com/data/least-squares-regression.html


Now that you have an understanding of the math behind this exercise, create a Regression model to

see if you can predict which package of pumpkins will have the best pumpkin prices. Someone

buying pumpkins for a holiday pumpkin patch might want this information to be able to optimize their

purchases of pumpkin packages for the patch.

Since you'll use Scikit-learn, there's no reason to do this by hand (although you could!). In the main

data-processing block of your lesson notebook, add a library from Scikit-learn to automatically

convert all string data to numbers:

If you look at the new_pumpkins dataframe now, you see that all the strings are now numeric. This

makes it harder for you to read but much more intelligible for Scikit-learn!

Now you can make more educated decisions (not just based on eyeballing a scatterplot) about the

data that is best suited to regression.

Try to find a good correlation between two points of your data to potentially build a good predictive

model. As it turns out, there's only weak correlation between the City and Price:

However there's a bit better correlation between the Package and its Price. That makes sense, right?

Normally, the bigger the produce box, the higher the price.

A good question to ask of this data will be: 'What price can I expect of a given pumpkin package?'

Let's build this regression model

Building A Linear Model

from sklearn.preprocessing import LabelEncoder 
 
new_pumpkins.iloc[:, 0:-1] = new_pumpkins.iloc[:, 0:-1].apply(LabelEncoder(
new_pumpkins.iloc[:, 0:-1] = new_pumpkins.iloc[:, 0:-1].apply(LabelEncoder(

python

print(new_pumpkins['City'].corr(new_pumpkins['Price'])) 
0.32363971816089226

python

print(new_pumpkins['Package'].corr(new_pumpkins['Price'])) 
0.6061712937226021

python



Before building your model, do one more tidy-up of your data. Drop any null data and check once

more what the data looks like.

Then, create a new dataframe from this minimal set and print it out:

Now you can assign your X and y coordinate data:

What's going on here? You're using Python slice notation to create arrays to populate X  and

y .

Next, start the regression model-building routines:

new_pumpkins.dropna(inplace=True) 
new_pumpkins.info()

python

new_columns = ['Package', 'Price'] 
lin_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c not 
 
lin_pumpkins 

python

    Package    Price 
70    0    13.636364 
71    0    16.363636 
72    0    16.363636 
73    0    15.454545 
74    0    13.636364 
...    ...    ... 
1738    2    30.000000 
1739    2    28.750000 
1740    2    25.750000 
1741    2    24.000000 
1742    2    24.000000 
415 rows × 2 columns

X = lin_pumpkins.values[:, :1] 
y = lin_pumpkins.values[:, 1:2]

python

https://stackoverflow.com/questions/509211/understanding-slice-notation/509295#509295


Because the correlation isn't particularly good, the model produced isn't terribly accurate.

You can visualize the line that's drawn in the process:

from sklearn.linear_model import LinearRegression 
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_err
from sklearn.model_selection import train_test_split 
 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
lin_reg = LinearRegression() 
lin_reg.fit(X_train,y_train) 
 
pred = lin_reg.predict(X_test) 
 
accuracy_score = lin_reg.score(X_train,y_train) 
print('Model Accuracy: ', accuracy_score) 

python

Model Accuracy:  0.3315342327998987

plt.scatter(X_test, y_test,  color='black') 
plt.plot(X_test, pred, color='blue', linewidth=3) 
 
plt.xlabel('Package') 
plt.ylabel('Price') 
 
plt.show()

python



And you can test the model against a hypothetical variety:

The returned price for this mythological Variety is:

That number makes sense, if the logic of the regression line holds true.

Congratulations, you just created a model that can help predict the price of a few varieties of

pumpkins. Your holiday pumpkin patch will be beautiful. But you can probably create a better model!

Polynomial regression

Another type of linear regression is polynomial regression. While sometimes there's a linear

relationship between variables - the bigger the pumpkin in volume, the higher the price - sometimes

these relationships can't be plotted as a plane or straight line.

lin_reg.predict( np.array([ [2.75] ]) )
python

array([[33.15655975]])



✅  Here are some more examples of data that could use polynomial regression

Take another look at the relationship between Variety to Price in the previous plot. Does this

scatterplot seem like it should necessarily be analyzed by a straight line? Perhaps not. In this case,

you can try polynomial regression.

✅  Polynomials are mathematical expressions that might consist of one or more variables and

coefficients

Polynomial regression creates a curved line to better fit nonlinear data. Let's recreate a dataframe

populated with a segment of the original pumpkin data:

A good way to visualize the correlations between data in dataframes is to display it in a 'coolwarm'

chart:

Looking at this chart, you can visualize the good correlation between Package and Price. So you

should be able to create a somewhat better model than the last one.

Build out the X and y columns:

new_columns = ['Variety', 'Package', 'City', 'Month', 'Price'] 
poly_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c not
 
poly_pumpkins

python

corr = poly_pumpkins.corr() 
corr.style.background_gradient(cmap='coolwarm')

python

X=poly_pumpkins.iloc[:,3:4].values 
y=poly_pumpkins.iloc[:,4:5].values

python

https://online.stat.psu.edu/stat501/lesson/9/9.8


Scikit-learn includes a helpful API for building polynomial regression models - the make_pipeline

API. A 'pipeline' is created which is a chain of estimators. In this case, the pipeline includes

polynomial features, or predictions that form a nonlinear path.

At this point, you need to create a new dataframe with sorted data so that the pipeline can create a

sequence:

from sklearn.preprocessing import PolynomialFeatures 
from sklearn.pipeline import make_pipeline 
 
pipeline = make_pipeline(PolynomialFeatures(4), LinearRegression()) 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
 
pipeline.fit(np.array(X_train), y_train) 
 
y_pred=pipeline.predict(X_test)

python

df = pd.DataFrame({'x': X_test[:,0], 'y': y_pred[:,0]}) 
df.sort_values(by='x',inplace = True) 
points = pd.DataFrame(df).to_numpy() 
 
plt.plot(points[:, 0], points[:, 1],color="blue", linewidth=3) 
plt.xlabel('Package') 
plt.ylabel('Price') 
plt.scatter(X,y, color="black") 
plt.show()

python

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline


You can see a curved line that fits your data better. Let's check the model's accuracy:

And voila!

That's better! Try to predict a price:

You are given this prediction:

accuracy_score = pipeline.score(X_train,y_train) 
print('Model Accuracy: ', accuracy_score)

python

Model Accuracy:  0.8537946517073784

pipeline.predict( np.array([ [2.75] ]) )
python

array([[46.34509342]])



It does make sense! And, if this is a better model than the previous one, looking at the same data, you

need to budget for these more expensive pumpkins!

🏆  Well done! You created two regression models in one lesson. In the final section on regression,

you will learn about logistic regression to determine categories.

🚀Challenge

Test several different variables in this notebook to see how correlation corresponds to model

accuracy.

Post-lecture quiz

Review & Self Study

In this lesson we learned about Linear Regression. There are other important types of Regression.

Read about Stepwise, Ridge, Lasso and Elasticnet techniques. A good course to study to learn more

is the Stanford Statistical Learning course

Assignment

Build a Model

Logistic regression to predict categories

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/14/
https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning
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Pre-lecture quiz

Introduction

In this final lesson on Regression, one of the basic 'classic' ML techniques, we will take a look at

Logistic Regression. You would use this technique to discover patterns to predict binary categories. Is

this candy chocolate or not? Is this disease contagious or not? Will this customer choose this product

or not?

In this lesson, you will learn:

A new library for data visualization

Techniques for logistic regression

Deepen your understanding of working with this type of regression in this Learn module

https://twitter.com/dasani_decoded
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/15/
https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-15963-cxa


Prerequisite

Having worked with the pumpkin data, we are now familiar enough with it to realize that there's one

binary category that we can work with: Color. Let's build a logistic regression model to predict that,

given some variables, what color a given pumpkin is likely to be (orange 🎃  or white 👻 ).

Why are we talking about binary classification in a lesson grouping about regression? Only for

linguistic convenience, as logistic regression is really a classification method, albeit a linear-

based one. Learn about other ways to classify data in the next lesson group.

For our purposes, we will express this as a binary: 'Orange' or 'Not Orange'. There is also a 'striped'

category in our dataset but there are few instances of it, so we will not use it. It disappears once we

remove null values from the dataset, anyway.

🎃  Fun fact, we sometimes call white pumpkins 'ghost' pumpkins. They aren't very easy to

carve, so they aren't as popular as the orange ones but they are cool looking!

About logistic regression

Logistic regression differs from linear regression, which you learned about previously, in a few

important ways.

Binary classification

Logistic regression does not offer the same features as linear regression. The former offers a

prediction about a binary category ("orange or not orange") whereas the latter is capable of

predicting continual values, for example given the origin of a pumpkin and the time of harvest, how

much its price will rise.

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression


Infographic by Dasani Madipalli

Other classifications

There are other types of logistic regression, including multinomial and ordinal. Multinomial involves

having more than one categories - "Orange, White, and Striped". Ordinal involves ordered categories,

useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite

number of sizes (mini,sm,med,lg,xl,xxl).

https://twitter.com/dasani_decoded
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It's still linear

Even though this type of Regression is all about category predictions, it still works best when there is

a clear linear relationship between the dependent variable (color) and the other independent

variables (the rest of the dataset, like city name and size). It's good to get an idea of whether there is

any linearity dividing these variables or not.

Variables DO NOT have to correlate

Remember how linear regression worked better with more correlated variables? Logistic regression is

the opposite - the variables don't have to align. That works for this data which has somewhat weak

correlations.

You need a lot of clean data

https://twitter.com/dasani_decoded


Logistic regression will give more accurate results if you use more data; our small dataset is not

optimal for this task, so keep that in mind.

✅  Think about the types of data that would lend themselves well to logistic regression

Tidy the data

First, clean the data a bit, dropping null values and selecting only some of the columns:

You can always take a peek at your new dataframe:

Visualization

By now you have loaded up the starter notebook with pumpkin data once again and cleaned it so as

to preserve a dataset containing a few variables, including Color. Let's visualize the dataframe in the

notebook using a different library: Seaborn, which is built on Matplotlib which we used earlier.

Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of

the data for each point in a side-by side grid.

from sklearn.preprocessing import LabelEncoder 
 
new_columns = ['Color','Origin','Item Size','Variety','City Name','Package
 
new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_c
 
new_pumpkins.dropna(inplace=True) 
 
new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform)

python

new_pumpkins.info
python

import seaborn as sns 
 
g = sns.PairGrid(new_pumpkins) 
g.map(sns.scatterplot)

python

https://seaborn.pydata.org/index.html


By observing data side-by-side, you can see how the Color data relates to the other columns.

✅  Given this scatterplot grid, what are some interesting explorations you can envision?

Since Color is a binary category (Orange or Not), it's called 'categorical data' and needs 'a more

specialized approach to visualization'. There are other ways to visualize the relationship of this

category with other variables. You can visualize variables side-by-side with Seaborn plots. Try a

'swarm' plot to show the distribution of values:

sns.swarmplot(x="Color", y="Item Size", data=new_pumpkins)
python

https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar


A 'violin' type plot is useful as you can easily visualize the way that data in the two categories is

distributed. Violin plots don't work so well with smaller datasets as the distribution is displayed more

'smoothly'.

✅  Try creating this plot, and other Seaborn plots, using other variables.

sns.catplot(x="Color", y="Item Size", 
            kind="violin", data=new_pumpkins)

python



Now that we have an idea of the relationship between the binary categories of color and the larger

group of sizes, let's explore logistic regression to determine a given pumpkin's likely color.

🧮  Show Me The Math

Remember how linear regression often used ordinary least squares to arrive at a value?

Logistic regression relies on the concept of 'maximum likelihood' using sigmoid functions. A

'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere

between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like thus:

where the sigmoid's midpoint finds itself at x's 0 point, L is the curve's maximum value, and k

is the curve's steepness. If the outcome of the function is more than 0.5, the label in question

will be given the class '1' of the binary choice. If not, it will be classified as '0'.

Build your model

Building a model to find these binary classification is surprisingly straightforward in Scikit-learn.

Select the variables you want to use in your classification model and split the training and test sets:

Now you can train your model and print out its result:

from sklearn.model_selection import train_test_split 
 
Selected_features = ['Origin','Item Size','Variety','City Name','Package'] 
 
X = new_pumpkins[Selected_features] 
y = new_pumpkins['Color'] 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra

python

https://wikipedia.org/wiki/Sigmoid_function


Take a look at your model's scoreboard. It's not too bad, considering you have only about 1000 rows

of data:

Better comprehension via a confusion matrix

While you can get a scoreboard report terms by printing out the items above, you might be able to

understand your model more easily by using a confusion matrix to help us understand how the model

is performing.

from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score, classification_report  
from sklearn.linear_model import LogisticRegression 
 
model = LogisticRegression() 
model.fit(X_train, y_train) 
predictions = model.predict(X_test) 
 
print(classification_report(y_test, predictions)) 
print('Predicted labels: ', predictions) 
print('Accuracy: ', accuracy_score(y_test, predictions))

python

                   precision    recall  f1-score   support 
 
           0       0.85      0.95      0.90       166 
           1       0.38      0.15      0.22        33 
 
    accuracy                           0.82       199 
   macro avg       0.62      0.55      0.56       199 
weighted avg       0.77      0.82      0.78       199 
 
Predicted labels:  [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 1 0 1 0 0 1 0 0 0 1 0]

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report
https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix


🎓  A 'confusion matrix' (or 'error matrix') is a table that expresses your model's true vs. false

positives and negatives, thus gauging the accuracy of predictions.

Take a look at your model's confusion matrix:

What's going on here? Let's say our model is asked to classify items between two binary categories,

category 'pumpkin' and category 'not-a-pumpkin'.

If your model predicts something as a pumpkin and it belongs to category 'pumpkin' in reality we

call it a true positive, shown by the top left number.

If your model predicts something as not a pumpkin and it belongs to category 'pumpkin' in reality

we call it a false positive, shown by the top right number.

If your model predicts something as a pumpkin and it belongs to category 'not-a-pumpkin' in

reality we call it a false negative, shown by the bottom left number.

If your model predicts something as not a pumpkin and it belongs to category 'not-a-pumpkin' in

reality we call it a true negative, shown by the bottom right number.

from sklearn.metrics import confusion_matrix 
confusion_matrix(y_test, predictions)

python

array([[162,   4], 
       [ 33,   0]])

https://wikipedia.org/wiki/Confusion_matrix
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As you might have guessed it's preferable to have a larger number of true positives and true

negatives and a lower number of false positives and false negatives, which implies that the model

performs better.

✅  Q: According to the confusion matrix, how did the model do? A: Not too bad; there are a good

number of true positives but also several false negatives.

Let's revisit the terms we saw earlier with the help of the confusion matrix's mapping of TP/TN and

FP/FN:

🎓  Precision: TP/(TP + FN) The fraction of relevant instances among the retrieved instances (e.g.

which labels were well-labeled)

🎓  Recall: TP/(TP + FP) The fraction of relevant instances that were retrieved, whether well-labeled

or not

🎓  f1-score: (2 * precision * recall)/(precision + recall) A weighted average of the precision and recall,

with best being 1 and worst being 0

🎓  Support: The number of occurrences of each label retrieved

🎓  Accuracy: (TP + TN)/(TP + TN + FP + FN) The percentage of labels predicted accurately for a

sample.

https://twitter.com/jenlooper


🎓  Macro Avg: The calculation of the unweighted mean metrics for each label, not taking label

imbalance into account.

🎓  Weighted Avg: The calculation of the mean metrics for each label, taking label imbalance into

account by weighting them by their support (the number of true instances for each label).

✅  Can you think which metric you should watch if you want your model to reduce the number of

false negatives?

Visualize the ROC curve of this model

This is not a bad model; its accuracy is in the 80% range so ideally you could use it to predict the

color of a pumpkin given a set of variables.

Let's do one more visualization to see the so-called 'ROC' score:

Using Seaborn again, plot the model's Receiving Operating Characteristic or ROC. ROC curves are

often used to get a view of the output of a classifier in terms of its true vs. false positives. "ROC

curves typically feature true positive rate on the Y axis, and false positive rate on the X axis." Thus,

the steepness of the curve and the space between the midpoint line and the curve matter: you want a

curve that quickly heads up and over the line. In our case, there are false positives to start with, and

then the line heads up and over properly:

from sklearn.metrics import roc_curve, roc_auc_score 
 
y_scores = model.predict_proba(X_test) 
# calculate ROC curve 
fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) 
sns.lineplot([0, 1], [0, 1]) 
sns.lineplot(fpr, tpr)

python

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc


Finally, use Scikit-learn's roc_auc_score  API to compute the actual 'Area Under the Curve'

(AUC):

The result is 0.6976998904709748 . Given that the AUC ranges from 0 to 1, you want a big score,

since a model that is 100% correct in its predictions will have an AUC of 1; in this case, the model is

pretty good.

In future lessons on classifications, you will learn how to iterate to improve your model's scores. But

for now, congratulations! You've completed these regression lessons!

🚀Challenge

There's a lot more to unpack regarding logistic regression! But the best way to learn is to experiment.

Find a dataset that lends itself to this type of analysis and build a model with it. What do you learn?

tip: try Kaggle for interesting datasets.

Post-lecture quiz

auc = roc_auc_score(y_test,y_scores[:,1]) 
print(auc)

python

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score
https://kaggle.com/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/16/


Review & Self Study

Read the first few pages of this paper from Stanford on some practical uses for logistic regression.

Think about tasks that are better suited for one or the other type of regression tasks that we have

studied up to this point. What would work best?

Assignment

Retrying this regression

Build a Web App to use a ML Model
In this lesson, you will train a ML model on a dataset that's out of this world: UFO sightings over the

past century, sourced from NUFORC's database. We will continue our use of notebooks to clean data

and train our model, but you can take the process one step further by exploring using a model 'in the

wild', so to speak: in a web app. To do this, you need to build a web app using Flask.

Pre-lecture quiz

There are several ways to build web apps to consume machine learning models. Your web

architecture may influence the way your model is trained. Imagine that you are working in a business

where the data science group has trained a model that they want you to use in an app. There are

many questions you need to ask: Is it a web app, or a mobile app? Where will the model reside, in the

cloud or locally? Does the app have to work offline? And what technology was used to train the

model, because that may influence the tooling you need to use?

If you are training a model using TensorFlow, for example, that ecosystem provides the ability to

convert a TensorFlow model for use in a web app by using TensorFlow.js. If you are building a mobile

app or need to use the model in an IoT context, you could use TensorFlow Lite and use the model in

an Android or iOS app.

If you are building a model using a library such as PyTorch, you have the option to export it in ONNX

(Open Neural Network Exchange) format for use in JavaScript web apps that can use the Onnx

Runtime. This option will be explored in a future lesson for a Scikit-learn-trained model.

https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://www.nuforc.org/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/17/
https://www.tensorflow.org/js/
https://www.tensorflow.org/lite/
https://pytorch.org/
https://onnx.ai/
https://www.onnxruntime.ai/


If you are using an ML SaaS (Software as a Service) system such as Lobe.ai or Azure Custom Vision

to train a model, this type of software provides ways to export the model for many platforms,

including building a bespoke API to be queried in the cloud by your online application.

You also have the opportunity to build an entire Flask web app that would be able to train the model

itself in a web browser. This can also be done using TensorFlow.js in a JavaScript context. For our

purposes, since we have been working with Python-based notebooks, let's explore the steps you

need to take to export a trained model from such a notebook to a format readable by a Python-built

web app.

Tools

For this task, you need two tools: Flask and Pickle, both of which run on Python.

✅  What's Flask? Defined as a 'micro-framework' by its creators, Flask provides the basic features of

web frameworks using Python and a templating engine to build web pages. Take a look at this Learn

module to practice building with Flask.

✅  What's Pickle? Pickle 🥒  is a Python module that serializes and de-serializes a Python object

structure. When you 'pickle' a model, you serialize or flatten its structure for use on the web. Be

careful: pickle is not intrinsically secure, so be careful if prompted to 'un-pickle' a file. A pickled file

has the suffix .pkl .

Clean your data

In this lesson you'll use data from 80,000 UFO sightings, gathered by NUFORC (The National UFO

Reporting Center). This data has some interesting descriptions of UFO sightings, for example "A man

emerges from a beam of light that shines on a grassy field at night and he runs towards the Texas

Instruments parking lot" or simply "the lights chased us". The ufos.csv spreadsheet includes columns

about the city, state and country where the sighting occurred, the object's shape and its latitude and

longitude.

In the blank notebook included in this lesson, import pandas, matplotlib, and numpy as you did in

previous lessons and import the ufos spreadsheet. You can take a look at a sample data set:

import pandas as pd 
import numpy as np 
 

python

https://lobe.ai/
https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa
https://palletsprojects.com/p/flask/
https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa
https://docs.python.org/3/library/pickle.html
https://nuforc.org/


Convert the ufos data to a small dataframe with fresh titles. Check the unique values in the Country

field.

Now, you can reduce the amount of data we need to deal with by dropping any null values and only

importing sightings between 1-60 seconds:

Next, import Scikit-learn's LabelEncoder library to convert the text values for countries to a number.

✅  LabelEncoder encodes data alphabetically

Your data should look like this:

ufos = pd.read_csv('../data/ufos.csv') 
ufos.head()

ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos
 
ufos.Country.unique()

python

ufos.dropna(inplace=True) 
 
ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] 
 
ufos.info()

python

from sklearn.preprocessing import LabelEncoder 
 
ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) 
 
ufos.head()

python

    Seconds    Country    Latitude    Longitude 
2    20.0    3        53.200000    -2.916667 
3    20.0    4        28.978333    -96.645833 
14    30.0    4        35.823889    -80.253611 
23    60.0    4        45.582778    -122.352222 
24    3.0        3        51.783333    -0.783333



Build your model

Now you can get ready to train a model by diving the data into the training and testing group. Select

the three features you want to train on as your X vector, and the y vector will be the Country. You

want to be able to input seconds, latitude and longitude and get a country id to return.

Finally, train your model using logistic regression:

The accuracy isn't bad (around 95%), unsurprisingly, as country and latitude/longitude correlate. The

model you created isn't very revolutionary as it's obvious you should be able to infer a country from

its latitude and longitude, but it's a good exercise to try to train from raw data that you cleaned,

exported, and then use this model in a web app.

Pickle your model

Now, it's time to pickle your model! You can do that in just a few lines of code. Once it's pickled, load

your pickled model and test it against a sample data array containing values for seconds, latitude and

longitude,

from sklearn.model_selection import train_test_split 
 
Selected_features = ['Seconds','Latitude','Longitude'] 
 
X = ufos[Selected_features] 
y = ufos['Country'] 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra

python

from sklearn.metrics import accuracy_score, classification_report  
from sklearn.linear_model import LogisticRegression 
model = LogisticRegression() 
model.fit(X_train, y_train) 
predictions = model.predict(X_test) 
 
print(classification_report(y_test, predictions)) 
print('Predicted labels: ', predictions) 
print('Accuracy: ', accuracy_score(y_test, predictions))

python



The model returns '3', which is the country code for the UK. Wild! 👽

Build a Flask app

Now you can build a Flask app to call your model and return similar results, but in a more visually

pleasing way.

Start by creating a folder called web-app next to the notebook.ipynb file where your ufo-model.pkl

file resides. In that folder create three more folders: static , with a folder css  inside it, and

templates .

✅  Refer to the solution folder for a view of the finished app

The first file to create in web-app  is a requirements.txt  file. Like package.json  in a

JavaScript app, this file lists dependencies required by the app. In requirements.txt  add the

lines:

Now, run this file by navigating to web-app  ( cd web-app ) in your terminal and typing

pip install -r requirements.txt .

Now, you're ready to create three more files to finish the app:

1. Create app.py  in the root

2. Create index.html  in templates

3. Create styles.css  in static/css

Build out the styles.css file with a few styles:

import pickle 
model_filename = 'ufo-model.pkl' 
pickle.dump(model, open(model_filename,'wb')) 
 
model = pickle.load(open('ufo-model.pkl','rb')) 
print(model.predict([[50,44,-12]]))

python

scikit-learn 
pandas 
numpy 
flask

text



Next, build out the index.html  file:

body { 
    width: 100%; 
    height: 100%; 
    font-family: 'Helvetica'; 
    background: black; 
    color: #fff; 
    text-align: center; 
    letter-spacing: 1.4px; 
    font-size: 30px;
} 
 
input { 
    min-width: 150px;
} 
 
.grid { 
    width: 300px; 
    border: 1px solid #2d2d2d; 
    display: grid; 
    justify-content: center; 
    margin: 20px auto;
} 
 
.box { 
    color: #fff; 
    background: #2d2d2d; 
    padding: 12px; 
    display: inline-block;
}

css

<!DOCTYPE html>
<html>
<head> 
  <meta charset="UTF-8"> 
  <title>🛸  UFO Appearance Prediction! 👽 </title> 
  <link rel="stylesheet" href="{{ url_for('static', filename='css/styles.cs
</head> 
 
<body> 
 <div class="grid"> 

html



Take a look at the templating in this file. Notice the 'mustache' syntax around variables that will be

provided by the app, like the prediction text: {{}} . There's also a form that posts a prediction to

the /predict  route.

Finally, you're ready to build the python file that drives the consumption of the model and the display

of predictions:

In app.py  add:

 
  <div class="box"> 
 
  <p>According to the number of seconds, latitude and longitude, which coun
 
    <form action="{{ url_for('predict')}}"method="post"> 
        <input type="number" name="seconds" placeholder="Seconds" required=
      <input type="text" name="latitude" placeholder="Latitude" required="r
          <input type="text" name="longitude" placeholder="Longitude" requi
      <button type="submit" class="btn">Predict country where the UFO is se
    </form> 
 
   
   <p>{{ prediction_text }}</p> 
 
 </div>
</div> 
 
</body>
</html>

import numpy as np 
from flask import Flask, request, render_template 
import pickle 
 
app = Flask(__name__) 
 
model = pickle.load(open("../ufo-model.pkl", "rb")) 
 
 
@app.route("/") 
def home(): 
    return render_template("index.html") 
 

python



💡  Tip: when you add debug=True  while running the web app using Flask, any changes

you make to your application will be reflected immediately without the need to restart the

server. Beware! Don't enable this mode in a production app.

If you run python app.py  or python3 app.py  - your web server starts up, locally, and you

can fill out a short form to get an answer to your burning question about where UFOs have been

sighted!

Before doing that, take a look at the parts of app.py .

First, dependencies are loaded and the app starts. Then, the model is imported. Then, index.html is

rendered on the home route. On the /predict  route, several things happen when the form is

posted:

1. The form variables are gathered and converted to a numpy array. They are then sent to the model

and a prediction is returned.

2. The Countries that we want displayed are re-rendered as readable text from their predicted

country code, and that value is sent back to index.html to be rendered in the template.

Using a model this way, with Flask and a pickled model, is relatively straightforward. The hardest

thing is to understand what shape the data is that must be sent to the model to get a prediction. That

 
@app.route("/predict", methods=["POST"]) 
def predict(): 
 
    int_features = [int(x) for x in request.form.values()] 
    final_features = [np.array(int_features)] 
    prediction = model.predict(final_features) 
 
    output = prediction[0] 
 
    countries = ["Australia", "Canada", "Germany", "UK", "US"] 
 
    return render_template( 
        "index.html", prediction_text="Likely country: {}".format(countries
    ) 
 
 
if __name__ == "__main__": 
    app.run(debug=True)

https://www.askpython.com/python-modules/flask/flask-debug-mode


all depends on how the model was trained. This one has three data points to be input in order to get a

prediction.

In a professional setting, you can see how good communication is necessary between the folks who

train the model and those who consume it in a web or mobile app. In our case, it's only one person,

you!

🚀 Challenge:

Instead of working in a notebook and importing the model to the Flask app, you could train the model

right within the Flask app! Try converting your Python code in the notebook, perhaps after your data

is cleaned, to train the model from within the app on a route called train . What are the pros and

cons of pursuing this method?

Post-lecture quiz

Review & Self Study

There are many ways to build a web app to consume ML models. Make a list of the ways you could

use JavaScript or Python to build a web app to leverage machine learning. Consider architecture:

should the model stay in the app or live in the cloud? If the latter, how would you access it? Draw out

an architectural model for an applied ML web solution.

Assignment

Try a different model

Introduction to classification
In these four lessons, you will discover the 'meat and potatoes' of classic machine learning -

classification. No pun intended - we will walk through using various classification algorithms with a

dataset all about the brilliant cuisines of Asia and India. Hope you're hungry!

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/18/


Classification is a form of supervised learning that bears a lot in common with regression techniques.

If machine learning is all about assigning names to things via datasets, then classification generally

falls into two groups: binary classification and multiclass classification.

🎥  Click the image above for a video: MIT's John Guttag introduces classification

Remember, linear regression helped you predict relationships between variables and make accurate

predictions on where a new datapoint would fall in relationship to that line. So, you could predict what

price a pumpkin would be in September vs. December, for example. Logistic Regression helped you

discover binary categories: at this price point, is this pumpkin orange or not-orange?

Classification uses various algorithms to determine other ways of determining a data point's label or

class. Let's work with this cuisine data to see whether, by observing a group of ingredients, we can

determine its cuisine of origin.

Pre-lecture quiz

Introduction

Classification is one of the fundamental activities of the machine learning researcher and data

scientist. From basic classification of a binary value ("is this email spam or not?") to complex image

classification and segmentation using computer vision, it's always useful to be able to sort data into

classes and ask questions of it. Or, to state the process in a more scientific way, your classification

https://wikipedia.org/wiki/Supervised_learning
https://youtu.be/eg8DJYwdMyg
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/19/


method creates a predictive model that enables you to map the relationship between input variables

to output variables.

Before starting the process of cleaning our data, visualizing it, and prepping it for our ML tasks, let's

learn a bit about the various ways machine learning can be leveraged to classify data.

Derived from statistics, classification using classic machine learning uses features, such as

'smoker','weight', and 'age' to determine 'likelihood of developing X disease'. As a supervised learning

technique similar to the regression exercises you performed earlier, your data is labeled and the ML

algorithms use those labels to classify and predict classes (or 'features') of a dataset and assign

them to a group or outcome.

✅  Take a moment to imagine a dataset about cuisines. What would a multiclass model be able to

answer? What would a binary model be able to answer? What if you wanted to determine whether a

given cuisine was likely to use fenugreek? What if you wanted to see if, given a present of a grocery

bag full of star anise, artichokes, cauliflower, and horseradish, you could create a typical Indian dish?

The whole premise of the show 'Chopped' is the 'mystery basket' where chefs have to make

some dish out of a random choice of ingredients. Surely a ML model would have helped!

Hello 'classifier'

The question we want to ask of this cuisine dataset is actually a multiclass question, as we have

several potential national cuisines to work with. Given a batch of ingredients, which of these many

https://wikipedia.org/wiki/Statistical_classification
https://youtu.be/GuTeDbaNoEU


classes will the data fit?

Scikit-learn offers several different algorithms to use to classify data, depending on the kind of

problem you want to solve. In the next two lessons, you'll learn about several of these algorithms.

Clean and balance your data

The first task at hand before starting this project is to clean and balance your data to get better

results. Start with the blank notebook.ipynb  file in the root of this folder.

The first thing to install is imblearn. This is a Scikit-learn package that will allow you to better balance

the data (you will learn more about this task in a minute).

Then, import the packages you need to import your data and visualize it. Import SMOTE from

imblearn.

The next task will be to import the data:

Check the data's shape:

The first five rows look like this:

Unnamed:

0
cuisine almond angelica anise anise_seed apple apple_brandy apric

pip install imblearn
python

import pandas as pd 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
import numpy as np 
from imblearn.over_sampling import SMOTE

python

df  = pd.read_csv('../data/cuisines.csv')
python

df.head()
python

https://imbalanced-learn.org/stable/


Get info about this data:

Learning about cuisines

Now the work starts to become more interesting. Let's discover the distribution of data, per cuisine:

Unnamed:

0
cuisine almond angelica anise anise_seed apple apple_brandy apric

0 65 indian 0 0 0 0 0 0 0

1 66 indian 1 0 0 0 0 0 0

2 67 indian 0 0 0 0 0 0 0

3 68 indian 0 0 0 0 0 0 0

4 69 indian 0 0 0 0 0 0 0

df.info()
python

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 2448 entries, 0 to 2447 
Columns: 385 entries, Unnamed: 0 to zucchini 
dtypes: int64(384), object(1) 
memory usage: 7.2+ MB

df.cuisine.value_counts().plot.barh()
python



There are a finite number of cuisines, but the distribution of data is uneven. You can fix that! Before

doing so, explore a little more. How much data exactly is available per cuisine?

thai df: (289, 385) japanese df: (320, 385) chinese df: (442, 385) indian df: (598, 385) korean df:

(799, 385)

Discovering ingredients

Now you can dig deeper into the data and learn what are the typical ingredients per cuisine. You

should clean out recurrent data that creates confusion between cuisines, so let's learn about this

problem.

Create a function in Python to create an ingredient dataframe. This function will start by dropping an

unhelpful column and sort through ingredients by their count:

thai_df = df[(df.cuisine == "thai")] 
japanese_df = df[(df.cuisine == "japanese")] 
chinese_df = df[(df.cuisine == "chinese")] 
indian_df = df[(df.cuisine == "indian")] 
korean_df = df[(df.cuisine == "korean")] 
 
print(f'thai df: {thai_df.shape}') 
print(f'japanese df: {japanese_df.shape}') 
print(f'chinese df: {chinese_df.shape}') 
print(f'indian df: {indian_df.shape}') 
print(f'korean df: {korean_df.shape}')

python

def create_ingredient_df(df): 
    ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_fram

python



Now you can use that function to get an idea of top ten most popular ingredients by cuisine:

chinese

    ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] 
    ingredient_df = ingredient_df.sort_values(by='value', ascending=False 
    inplace=False) 
    return ingredient_df

thai_ingredient_df = create_ingredient_df(thai_df) 
thai_ingredient_df.head(10).plot.barh()

python

japanese_ingredient_df = create_ingredient_df(japanese_df) 
japanese_ingredient_df.head(10).plot.barh()

python

chinese_ingredient_df = create_ingredient_df(chinese_df) 
chinese_ingredient_df.head(10).plot.barh()

python



Now, drop the most common ingredients that create confusion between distinct cuisines. Everyone

loves rice, garlic and ginger!

Balance the dataset

indian_ingredient_df = create_ingredient_df(indian_df) 
indian_ingredient_df.head(10).plot.barh()

python

korean_ingredient_df = create_ingredient_df(korean_df) 
korean_ingredient_df.head(10).plot.barh()

python

feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis
labels_df = df.cuisine #.unique() 
feature_df.head()

python



Now that you have cleaned the data, use SMOTE - "Synthetic Minority Over-sampling Technique" -

to balance it. This strategy generates new samples by interpolation.

By balancing your data, you'll have better results when classifying it. Think about a binary

classification. If most of your data is one class, a ML model is going to predict that class more

frequently, just because there is more data for it. Balancing the data takes any skewed data and helps

remove this imbalance.

Now you can check the numbers of labels per ingredient:

The data is nice and clean, balanced, and very delicious! You can take one more look at the data

using transformed_df.head()  and transformed_df.info() . Save a copy of this data for

use in future lessons:

This fresh CSV can now be found in the root data folder.

oversample = SMOTE() 
transformed_feature_df, transformed_label_df = oversample.fit_resample(feat

python

print(f'new label count: {transformed_label_df.value_counts()}') 
print(f'old label count: {df.cuisine.value_counts()}')

python

new label count: korean      799 
chinese     799 
indian      799 
japanese    799 
thai        799 
Name: cuisine, dtype: int64 
old label count: korean      799 
indian      598 
chinese     442 
japanese    320 
thai        289 
Name: cuisine, dtype: int64

transformed_df.to_csv("../../data/cleaned_cuisine.csv")
python

https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html


🚀Challenge

This curriculum contains several interesting datasets. Dig through the data  folders and see if any

contain datasets that would be appropriate for binary or multi-class classification? What questions

would you ask of this dataset?

Post-lecture quiz

Review & Self Study

Explore SMOTE's API. What use cases is it best used for? What problems does it solve?

Assignment

Explore classification methods

Cuisine classifiers 1
In this lesson, you will use the dataset you saved from the last lesson full of balanced, clean data all

about cuisines. You will use this dataset with a variety of classifiers to predict a given national cuisine

based on a group of ingredients. While doing so, you'll learn more about some of the ways that

algorithms can be leveraged for classification tasks.

Pre-lecture quiz

Preparation
Assuming you completed Lesson 1, make sure that a _cleaned_cuisines.csv_ file exists in the root

/data  folder for these four lessons.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/20/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/


Working in this lesson's notebook.ipynb folder, import that file along with the Pandas library:

The data looks like this:

Now, import several more libraries:

Divide the X and y coordinates into two dataframes for training. cuisine  can be the labels

dataframe:

It will look like this:

Unnamed:

0
cuisine almond angelica anise anise_seed apple apple_brandy apric

0 0 indian 0 0 0 0 0 0 0

1 1 indian 1 0 0 0 0 0 0

2 2 indian 0 0 0 0 0 0 0

3 3 indian 0 0 0 0 0 0 0

4 4 indian 0 0 0 0 0 0 0

import pandas as pd 
cuisines_df = pd.read_csv("../../data/cleaned_cuisine.csv") 
cuisines_df.head()

python

from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix
from sklearn.svm import SVC 
import numpy as np

python

cuisines_label_df = cuisines_df['cuisine'] 
cuisines_label_df.head()

python

0    indian 
1    indian 



Drop that Unnamed: 0  column and the cuisine  column and save the rest of the data as

trainable features:

Your features look like this:

Now you are ready to train your model!

Choosing your classifier

Now that your data is clean and ready for training, you have to decide which algorithm to use for the

job.

Scikit-learn groups classification under Supervised Learning, and in that category you will find many

ways to classify. The variety is quite bewildering at first sight. The following methods all include

classification techniques:

Linear Models

Support Vector Machines

Stochastic Gradient Descent

almond angelica anise anise_seed apple apple_brandy apricot armagnac artemisia

0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

2    indian 
3    indian 
4    indian 
Name: cuisine, dtype: object

cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) 
cuisines_feature_df.head()

python

https://scikit-learn.org/stable/supervised_learning.html


Nearest Neighbors

Gaussian Processes

Decision Trees

Ensemble methods (voting Classifier)

Multiclass and multioutput algorithms (multiclass and multilabel classification, multiclass-

multioutput classification)

You can also use neural networks to classify data, but that is outside the scope of this lesson.

So, which classifier should you choose? Often, running through several and looking for a good result

is a way to test. Scikit-learn offers a side-by-side comparison on a created dataset, comparing

KNeighbors, SVC two ways, GaussianProcessClassifier, DecisionTreeClassifier,

RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB and

QuadraticDiscrinationAnalysis, showing the results visualized:

Plots generated on Scikit-learn's documentation

AutoML solves this problem neatly by running these comparisons in the cloud, allowing you to

choose the best algorithm for your data. Try it here

A better way than wildly guessing, however, is to follow the ideas on this downloadable ML Cheat

sheet. Here, we discover that, for our multiclass problem, we have some choices:

https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-15963-cxa
https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-15963-cxa


A section of Microsoft's Algorithm Cheat Sheet, detailing multiclass classification options

✅  Download this cheat sheet, print it out, and hang it on your wall!

Given our clean, but minimal dataset, and the fact that we are running training locally via notebooks,

neural networks are too heavyweight for this task. We do not use a two-class classifier, so that rules

out one-vs-all. A decision tree might work, or logistic regression for multiclass data. The multiclass

boosted decision tree is most suitable for nonparametric tasks, e.g. tasks designed to build rankings,

so it is not useful for us.

We can focus on logistic regression for our first training trial since you recently learned about the

latter in a previous lesson.

Train your model



Let's train a model. Split your data into training and testing groups:

There are many ways to use the LogisticRegression library in Scikit-learn. Take a look at the

parameters to pass.

According to the docs, "In the multiclass case, the training algorithm uses the one-vs-rest (OvR)

scheme if the ‘multi_classʼ option is set to ‘ovr ,̓ and uses the cross-entropy loss if the ‘multi_classʼ

option is set to ‘multinomial̓. (Currently the ‘multinomial̓  option is supported only by the ‘lbfgs,̓ ‘sag,̓

‘sagaʼ and ‘newton-cgʼ solvers.)"

Since you are using the multiclass case, you need to choose what scheme to use and what 'solver' to

set.

Use LogisticRegression with a multiclass setting and the liblinear solver to train.

🎓  The 'scheme' here can either be 'ovr' (one-vs-rest) or 'multinomial'. Since logistic

regression is really designed to support binary classification, these schemes allow it to better

handle multiclass classification tasks. source

🎓  The 'solver' is defined as "the algorithm to use in the optimization problem". source.

Scikit-learn offers this table to explain how solvers handle different challenges presented by different

kinds of data structures:

X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cu
python

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression
https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression


✅  Try a different solver like lbfgs , which is often set as default

Note, use Pandas ravel  function to flatten your data when needed.

The accuracy is good at over 80%!

You can see this model in action by testing one row of data (#50):

The result is printed:

✅  Try a different row number and check the results

Digging deeper, you can check for the accuracy of this prediction:

The result is printed - Indian cuisine is its best guess, with good probability:

lr = LogisticRegression(multi_class='ovr',solver='liblinear') 
model = lr.fit(X_train, np.ravel(y_train)) 
 
accuracy = model.score(X_test, y_test) 
print ("Accuracy is {}".format(accuracy))

python

print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') 
print(f'cuisine: {y_test.iloc[50]}')

python

ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegeta
cuisine: indian

test= X_test.iloc[50].values.reshape(-1, 1).T 
proba = model.predict_proba(test) 
classes = model.classes_ 
resultdf = pd.DataFrame(data=proba, columns=classes) 
 
topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) 
topPrediction.head()

python

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html


00

indian 0.715851

chinese 0.229475

japanese 0.029763

korean 0.017277

thai 0.007634

✅  Can you explain why the model is pretty sure this is an Indian cuisine?

Get more detail by printing a classification report, as you did in the regression lessons:

precision recall f1-score support

chinese 0.73 0.71 0.72 229

indian 0.91 0.93 0.92 254

japanese 0.70 0.75 0.72 220

korean 0.86 0.76 0.81 242

thai 0.79 0.85 0.82 254

accuracy 0.80 1199

macro avg 0.80 0.80 0.80 1199

weighted avg 0.80 0.80 0.80 1199

🚀Challenge

y_pred = model.predict(X_test) 
print(classification_report(y_test,y_pred))

python



In this lesson, you used your cleaned data to build a machine learning model that can predict a

national cuisine based on a series of ingredients. Take some time to read through the many options

Scikit-learn provides to classify data. Dig deeper into the concept of 'solver' to understand what goes

on behind the scenes.

Post-lecture quiz

Review & Self Study

Dig a little more into the math behind logistic regression in this lesson

Assignment

Study the solvers

Cuisine classifiers 2
In this second classification lesson, you will explore more ways to classify numeric data. You will also

learn about the ramifications for choosing one over the other.

Pre-lecture quiz

Prerequisite

We assume that you have completed the previous lessons and have a cleaned dataset in your

data  folder called _cleaned_cuisine.csv_ in the root of this 4-lesson folder.

Preparation

We have loaded your notebook.ipynb file with the cleaned dataset and have divided it into X and y

dataframes, ready for the model building process.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/
https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/23/


A classification map

Previously, you learned about the various options you have when classifying data using Microsoft's

cheat sheet. Scikit-learn offers a similar, but more granular cheat sheet that can further help narrow

down your estimators (another term for classifiers):

Tip: visit this map online and click along the path to read documentation.

This map is very helpful once you have a clear grasp of your data, as you can 'walk' along its paths to

a decision:

We have >50 samples

We want to predict a category

We have labeled data

We have fewer than 100K samples

✨  We can choose a Linear SVC

If that doesn't work, since we have numeric data

We can try a ✨  KNeighbors Classifier

If that doesn't work, try ✨  SVC and ✨  Ensemble Classifiers

https://scikit-learn.org/stable/tutorial/machine_learning_map/


This is a very helpful trail to follow. Following this path, we should start by importing some libraries to

use:

Split your training and test data:

Linear SVC classifier

Start by creating an array of classifiers. You will add progressively to this array as we test. Start with a

Linear SVC:

Train your model using the Linear SVC and print out a report:

from sklearn.neighbors import KNeighborsClassifier 
from sklearn.linear_model import LogisticRegression 
from sklearn.svm import SVC 
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix
import numpy as np

python

X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cu
python

C = 10 
# Create different classifiers. 
classifiers = { 
    'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0
}

python

n_classifiers = len(classifiers) 
 
for index, (name, classifier) in enumerate(classifiers.items()): 
    classifier.fit(X_train, np.ravel(y_train)) 
 
    y_pred = classifier.predict(X_test) 
    accuracy = accuracy_score(y_test, y_pred) 
    print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) 
    print(classification_report(y_test,y_pred))

python



The result is pretty good:

✅  Learn about linear SVC

Support-Vector clustering (SVC) is a child of the Support-Vector machines family of ML techniques

(learn more about these below). In this method, you can choose a 'kernel' to decide how to cluster

the labels. The 'C' parameter refers to 'regularization' which regulates the influence of parameters.

The kernel can be one of several; here we set it to 'linear' to ensure that we leverage linear SVC.

Probability defaults to 'false'; here we set it to 'true' to gather probability estimates. We set the

random state to '0' to shuffle the data to get probabilities.

K-Neighbors classifier

The previous classifier was good, and worked well with the data, but maybe we can get better

accuracy. Try a K-Neighbors classifer. Add a line to your classifier array (add a comma after the Linear

SVC item):

The result is a little worse:

Accuracy (train) for Linear SVC: 78.6%  
              precision    recall  f1-score   support 
 
     chinese       0.71      0.67      0.69       242 
      indian       0.88      0.86      0.87       234 
    japanese       0.79      0.74      0.76       254 
      korean       0.85      0.81      0.83       242 
        thai       0.71      0.86      0.78       227 
 
    accuracy                           0.79      1199 
   macro avg       0.79      0.79      0.79      1199 
weighted avg       0.79      0.79      0.79      1199

'KNN classifier': KNeighborsClassifier(C),
python

Accuracy (train) for KNN classifier: 73.8%  
              precision    recall  f1-score   support 
 

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC


✅  Learn about K-Neighbors

K-Neighbors is part of the "neighbors" family of ML methods, which can be used for both supervised

and unsupervised learning. In this method, a predefined number of points is created and data are

gathered around these points such that generalized labels can be predicted for the data.

Support Vector Classifier

Let's try for a little better accuracy with a Support Vector Classifier. Add a comma after the K-

Neighbors item, and then add this line:

The result is quite good!

✅  Learn about Support-Vectors

     chinese       0.64      0.67      0.66       242 
      indian       0.86      0.78      0.82       234 
    japanese       0.66      0.83      0.74       254 
      korean       0.94      0.58      0.72       242 
        thai       0.71      0.82      0.76       227 
 
    accuracy                           0.74      1199 
   macro avg       0.76      0.74      0.74      1199 
weighted avg       0.76      0.74      0.74      1199

'SVC': SVC(),
python

Accuracy (train) for SVC: 83.2%  
              precision    recall  f1-score   support 
 
     chinese       0.79      0.74      0.76       242 
      indian       0.88      0.90      0.89       234 
    japanese       0.87      0.81      0.84       254 
      korean       0.91      0.82      0.86       242 
        thai       0.74      0.90      0.81       227 
 
    accuracy                           0.83      1199 
   macro avg       0.84      0.83      0.83      1199 
weighted avg       0.84      0.83      0.83      1199

https://scikit-learn.org/stable/modules/neighbors.html#neighbors
https://scikit-learn.org/stable/modules/svm.html#svm


Support-Vector classifiers are part of the Support-Vector Machine family of ML methods that are

used for classification and regression tasks. SVMs "map training examples to points in space" to

maximize the distance between two categories. Subsequent data is mapped into this space so their

category can be predicted.

Ensemble Classifiers

Let's follow the path to the very end, even though the previous test was quite good. Let's try some

'Ensemble Classifiers, specifically Random Forest and AdaBoost:

The result is very good, especially for Random Forest:

'RFST': RandomForestClassifier(n_estimators=100), 
 'ADA': AdaBoostClassifier(n_estimators=100)

Accuracy (train) for RFST: 84.5%  
              precision    recall  f1-score   support 
 
     chinese       0.80      0.77      0.78       242 
      indian       0.89      0.92      0.90       234 
    japanese       0.86      0.84      0.85       254 
      korean       0.88      0.83      0.85       242 
        thai       0.80      0.87      0.83       227 
 
    accuracy                           0.84      1199 
   macro avg       0.85      0.85      0.84      1199 
weighted avg       0.85      0.84      0.84      1199 
 
Accuracy (train) for ADA: 72.4%  
              precision    recall  f1-score   support 
 
     chinese       0.64      0.49      0.56       242 
      indian       0.91      0.83      0.87       234 
    japanese       0.68      0.69      0.69       254 
      korean       0.73      0.79      0.76       242 
        thai       0.67      0.83      0.74       227 
 
    accuracy                           0.72      1199 
   macro avg       0.73      0.73      0.72      1199 
weighted avg       0.73      0.72      0.72      1199

https://wikipedia.org/wiki/Support-vector_machine


✅  Learn about Ensemble Classifiers

This method of Machine Learning "combines the predictions of several base estimators" to improve

the model's quality. In our example, we used Random Trees and AdaBoost.

Random Forest, an averaging method, builds a 'forest' of 'decision trees' infused with

randomness to avoid overfitting. The n_estimators parameter is set to the number of trees.

AdaBoost fits a classifier to a dataset and then fits copies of that classifier to the same dataset. It

focuses on the weights of incorrectly classified items and adjusts the fit for the next classifier to

correct.

🚀Challenge

Each of these techniques has a large number of parameters that you can tweak. Research each one's

default parameters and think about what tweaking these parameters would mean for the model's

quality.

Post-lecture quiz

Review & Self Study

There's a lot of jargon in these lessons, so take a minute to review this list of useful terminology!

Assignment

Parameter play

Build a Cuisine Recommender Web App

https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/24/
https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-15963-cxa


In this lesson, you will build a classification model using some of the techniques you have learned in

previous lessons and with the delicious cuisine dataset used throughout this series. In addition, you

will build a small web app to use a saved model, leveraging Onnx's web runtime.

One of the most useful practical uses of machine learning is building recommendation systems, and

you can take the first step in that direction today!

🎥  Click the image above for a video: Andrew Ng introduces recommendation system design

Pre-lecture quiz

In this lesson you will learn:

How to build a model and save it as an Onnx model

How to use Netron to inspect the model

How to use your model in a web app for inference

Build your model

Building applied ML systems is an important part of leveraging these technologies for your business

systems. You can use models within your web applications (and thus use them in an offline context if

needed) by using Onnx. In a previous lesson, you built a Regression model about UFO sightings,

https://youtu.be/giIXNoiqO_U
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/25/


"pickled" it, and used it in a Flask app. While this architecture is very useful to know it is a full-stack

Python app, and your requirements may include the use of a JavaScript application. In this lesson,

you can build a basic JavaScript-based system for inference. First, however, you need to train a

model and convert it for use with Onnx.

First, train a classification model using the cleaned cuisines dataset we used. Start by importing

useful libraries:

You need 'skl2onnx' to help convert your Scikit-learn model to Onnx format.

Then, work with your data in the same way you did in previous lessons:

Remove the first two unnecessary columns and save the remaining data as 'X':

Save the labels as 'y':

Commence the training routine. We will use the 'SVC' library which has good accuracy. Import the

appropriate libraries from Scikit-learn:

Separate training and test sets:

pip install skl2onnx 
import pandas as pd 

python

data = pd.read_csv('../data/cleaned_cuisine.csv') 
data.head()

python

X = data.iloc[:,2:] 
X.head()

python

y = data[['cuisine']] 
y.head() 

python

from sklearn.model_selection import train_test_split 
from sklearn.svm import SVC 
from sklearn.model_selection import cross_val_score 
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix

python

https://onnx.ai/sklearn-onnx/


Build an SVC Classification model as you did in the previous lesson:

Now, test your model:

Print out a classification report to check the model's quality:

As we saw before, the accuracy is good:

Now, convert your model to Onnx. Make sure to do the conversion with the proper Tensor number.

This dataset has 380 ingredients listed, so you need to notate that number in FloatTensorType :

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
python

model = SVC(kernel='linear', C=10, probability=True,random_state=0) 
model.fit(X_train,y_train.values.ravel())

python

y_pred = model.predict(X_test)
python

print(classification_report(y_test,y_pred))
python

                precision    recall  f1-score   support 
 
     chinese       0.72      0.69      0.70       257 
      indian       0.91      0.87      0.89       243 
    japanese       0.79      0.77      0.78       239 
      korean       0.83      0.79      0.81       236 
        thai       0.72      0.84      0.78       224 
 
    accuracy                           0.79      1199 
   macro avg       0.79      0.79      0.79      1199 
weighted avg       0.79      0.79      0.79      1199

from skl2onnx import convert_sklearn 
from skl2onnx.common.data_types import FloatTensorType 
 
initial_type = [('float_input', FloatTensorType([None, 380]))] 
options = {id(model): {'nocl': True, 'zipmap': False}} 

python



Note, you can pass in options in your conversion script. In this case, we passed in 'nocl' to be

True and 'zipmap' to be False. Since this is a classification model, you have the option to

remove ZipMap which produces a list of dictionaries (not necessary). nocl  refers to class

information being included in the model. Reduce your model's size by setting nocl  to

'True'.

Running the entire notebook will now build an Onnx model and save it to this folder.

View your model

Onnx models are not very visible in Visual Studio code, but there's a very good free software that

many researchers use to visualize the model to ensure that it is properly built. Download Netron and

open your model.onnx file. You can see your simple model visualized, with its 380 inputs and

classifier listed:

Netron is a helpful tool to view your models.

onx = convert_sklearn(model, initial_types=initial_type, options=options) 
with open("./model.onnx", "wb") as f: 
    f.write(onx.SerializeToString())

https://onnx.ai/sklearn-onnx/parameterized.html
https://github.com/lutzroeder/Netron


Now you are ready to use this neat model in a web app. Let's build an app that will come in handy

when you look in your refrigerator and try to figure out which combination of your leftover ingredients

you can use to cook a given cuisine, as determined by your model.

Build a recommender web application

You can use your model directly in a web app. This architecture also allows you to run it locally and

even offline if needed. Start by creating an index.html  file in the same folder where you stored

your model.onnx  file.

In this file, add the following markup:

Now, working within the body  tags, add a little markup to show a list of checkboxes reflecting

some ingredients:

<!DOCTYPE html>
<html> 
    <header> 
        <title>Cuisine Matcher</title> 
    </header> 
    <body> 
        ... 
    </body>
</html>

html

<h1>Check your refrigerator. What can you create?</h1> 
        <div id="wrapper"> 
            <div class="boxCont"> 
                <input type="checkbox" value="4" class="checkbox"> 
                <label>apple</label> 
            </div> 
         
            <div class="boxCont"> 
                <input type="checkbox" value="247" class="checkbox"> 
                <label>pear</label> 
            </div> 
         
            <div class="boxCont"> 
                <input type="checkbox" value="77" class="checkbox"> 
                <label>cherry</label> 

html



Notice that each checkbox is given a value. This reflects the index where the ingredient is found

according to the dataset. Apple, for example, in this alphabetic list, occupies the fifth column, so its

value is '4' since we start counting at 0. You can consult the ingredients spreadsheet to discover a

given ingredient's index.

Continuing your work in the index.html file, add a script block where the model is called after the final

closing </div> . First, import the Onnx Runtime:

Onnx Runtime is used to enable running your Onnx models across a wide range of hardware

platforms, including optimizations and an API to use.

            </div> 
 
            <div class="boxCont"> 
                <input type="checkbox" value="126" class="checkbox"> 
                <label>fenugreek</label> 
            </div> 
 
            <div class="boxCont"> 
                <input type="checkbox" value="302" class="checkbox"> 
                <label>sake</label> 
            </div> 
 
            <div class="boxCont"> 
                <input type="checkbox" value="327" class="checkbox"> 
                <label>soy sauce</label> 
            </div> 
 
            <div class="boxCont"> 
                <input type="checkbox" value="112" class="checkbox"> 
                <label>cumin</label> 
            </div> 
        </div> 
        <div style="padding-top:10px"> 
            <button onClick="startInference()">What kind of cuisine can you
        </div> 

<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.8.0-dev.2021060
html

https://www.onnxruntime.ai/


Once the Runtime is in place, you can call it:

<script> 
            const ingredients = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
             
            const checks = [].slice.call(document.querySelectorAll('.checkb
 
            // use an async context to call onnxruntime functions. 
            function init() { 
                 
                checks.forEach(function (checkbox, index) { 
                    checkbox.onchange = function () { 
                        if (this.checked) { 
                            var index = checkbox.value; 
 
                            if (index !== -1) { 
                                ingredients[index] = 1; 
                            } 
                            console.log(ingredients) 
                        } 
                        else { 
                            var index = checkbox.value; 
 
                            if (index !== -1) { 
                                ingredients[index] = 0; 
                            } 
                            console.log(ingredients) 
                        } 
                    } 
                }) 
            } 
 
            function testCheckboxes() { 
                    for (var i = 0; i < checks.length; i++) 
                        if (checks[i].type == "checkbox") 
                            if (checks[i].checked) 
                                return true; 
                    return false; 
            } 
 
            async function startInference() { 
 
                let checked = testCheckboxes() 
 

javascript



In this code, there are several things happening:

1. You created an array of 380 possible values (1 or 0) to be set and sent to the model for inference,

depending on whether an ingredient checkbox is checked.

2. You created an array of checkboxes and a way to determine whether they were checked in an

init  function that is called when the application starts. When a checkbox is checked, the

ingredients  array is altered to reflect the chosen ingredient.

3. You created a testCheckboxes  function that checks whether any checkbox was checked.

4. You use that function when the button is pressed and, if any checkbox is checked, you start

inference.

5. The inference routine includes:

1. Setting up an asyncronous load of the model

2. Creating a Tensor structure to send to the model

3. Creating 'feeds' that reflects the float_input  input that you created when training your

model (you can use Netron to verify that name)

                if (checked) { 
 
                try { 
                    // create a new session and load the model. 
                     
                    const session = await ort.InferenceSession.create('./mo
 
                    const input = new ort.Tensor(new Float32Array(ingredien
                    const feeds = { float_input: input }; 
 
                    // feed inputs and run 
 
                    const results = await session.run(feeds); 
 
                    // read from results 
                    alert('You can enjoy ' + results.label.data[0] + ' cuis
 
                } catch (e) { 
                    console.log(`failed to inference ONNX model: ${e}.`); 
                } 
            } 
            else alert("Please check an ingredient") 
                 
            } 
    init(); 
            
        </script>



4. Sending these 'feeds' to the model and waiting for a response

Test your application

Open a terminal session in Visual Studio Code in the folder where your index.html file resides. Ensure

that you have [http-server](https://www.npmjs.com/package/http-server)  installed

globally, and type http-server  at the prompt. A localhost should open and you can view your

web app. Check what cuisine is recommended based on various ingredients:

Congratulations, you have created a simple web app recommendation with a few fields. Take some

time to build out this system!

🚀Challenge

Your web app is very minimal, so continue to build it out using ingredients and their indexes from the

ingredient_indexes data. What flavor combinations work to create a given national dish?

Post-lecture quiz

Review & Self Study

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/26/


While this lesson just touched on the utility of creating a recommendation system for food

ingredients, this area of ML applications is very rich in examples. Read some more about how these

systems are built:

https://www.sciencedirect.com/topics/computer-science/recommendation-engine

https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-

recommendation-engines/

https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/

Assignment

Build a new recommender

Introduction to clustering
Clustering is a type of Unsupervised Learning that presumes that a dataset is unlabelled. It uses

various algorithms to sort through unlabeled data and provide groupings according to patterns it

discerns in the data.

🎥  Click the image above for a video. While you're studying machine learning with clustering,

enjoy some Nigerian Dance Hall tracks - this is a highly rated song from 2014 by PSquare.

https://www.sciencedirect.com/topics/computer-science/recommendation-engine
https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/
https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/
https://wikipedia.org/wiki/Unsupervised_learning
https://youtu.be/ty2advRiWJM


Pre-lecture quiz

Introduction

Clustering is very useful for data exploration. Let's see if it can help discover trends and patterns in

the way Nigerian audiences consume music.

✅  Take a minute to think about the uses of clustering. In real life, clustering happens whenever you

have a pile of laundry and need to sort out your family members' clothes 🧦 👕 👖 🩲 . In data

science, clustering happens when trying to analyze a user's preferences, or determine the

characteristics of any unlabeled dataset. Clustering, in a way, helps make sense of chaos, like a sock

drawer.

🎥  Click the image above for a video: MIT's John Guttag introduces clustering

In a professional setting, clustering can be used to determine things like market segmentation,

determining what age groups buy what items, for example. Another use would be anomaly detection,

perhaps to detect fraud from a dataset of credit card transactions. Or you might use clustering to

determine tumors in a batch of medical scans.

✅  Think a minute about how you might have encountered clustering 'in the wild', in a banking, e-

commerce, or business setting.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/27/
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124
https://youtu.be/esmzYhuFnds


🎓  Interestingly, Cluster analysis originated in the fields of Anthropology and Psychology in

the 1930s. Can you imagine how it might have been used?

Alternately, you could use it for grouping search results - by shopping links, images, or reviews, for

example. Clustering is useful when you have a large dataset that you want to reduce and on which

you want to perform more granular analysis, so the technique can be used to learn about data before

other models are constructed.

✅  Once your data is organized in clusters, you assign it a cluster Id, and this technique can be useful

when preserving a dataset's privacy; you can instead refer to a data point by its cluster id, rather than

by more revealing identifiable data. Can you think of other reasons why you'd refer to a cluster Id

rather than other elements of the cluster to identify it?

Deepen your understanding of clustering techniques in this Learn module

Getting started with clustering

Scikit-learn offers a large array of methods to perform clustering. The type you choose will depend

on your use case. According to the documentation, each method has various benefits. Here is a

simplified table of the methods supported by Scikit-learn and their appropriate use cases:

Method name Use case

K-Means general purpose, inductive

Affinity propagation many, uneven clusters, inductive

Mean-shift many, uneven clusters, inductive

Spectral clustering few, even clusters, transductive

Ward hierarchical

clustering
many, constrained clusters, transductive

Agglomerative clustering many, constrained, non Euclidean distances, transductive

DBSCAN non-flat geometry, uneven clusters, transductive

https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-15963-cxa
https://scikit-learn.org/stable/modules/clustering.html


Method name Use case

OPTICS
non-flat geometry, uneven clusters with variable density,

transductive

Gaussian mixtures flat geometry, inductive

BIRCH large dataset with outliers, inductive

🎓  How we create clusters has a lot to do with how we gather up the data points into groups.

Let's unpack some vocabulary:

🎓  'Transductive' vs. 'inductive'

Transductive inference is derived from observed training cases that map to specific test

cases. Inductive inference is derived from training cases that map to general rules which are

only then applied to test cases.

An example: Imagine you have a dataset that is only partially labelled. Some things are

'records', some 'cds', and some are blank. Your job is to provide labels for the blanks. If you

choose an inductive approach, you'd train a model looking for 'records' and 'cds', and apply

those labels to your unlabeled data. This approach will have trouble classifying things that are

actually 'cassettes'. A transductive approach, on the other hand, handles this unknown data

more effectively as it works to group similar items together and then applies a label to a

group. In this case, clusters might reflect 'round musical things' and 'square musical things'.

🎓  'Non-flat' vs. 'flat' geometry

Derived from mathematical terminology, non-flat vs. flat geometry refers to the measure of

distances between points by either 'flat' (Euclidean) or 'non-flat' (non-Euclidean) geometrical

methods.

'Flat' in this context refers to Euclidean geometry (parts of which are taught as 'plane'

geometry), and non-flat refers to non-Euclidean geometry. What does geometry have to do

with machine learning? Well, as two fields that are rooted in mathematics, there must be a

common way to measure distances between points in clusters, and that can be done in a 'flat'

or 'non-flat' way, depending on the nature of the data. Euclidean distances are measured as

the length of a line segment between two points. Non-Euclidean distances are measured

along a curve. If your data, visualized, seems to not exist on a plane, you might need to use a

specialized algorithm to handle it.

https://wikipedia.org/wiki/Transduction_(machine_learning)
https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering
https://wikipedia.org/wiki/Euclidean_geometry
https://wikipedia.org/wiki/Euclidean_distance
https://wikipedia.org/wiki/Non-Euclidean_geometry


Infographic by Dasani Madipalli

🎓  'Distances'

Clusters are defined by their distance matrix, e.g. the distances between points. This distance

can be measured a few ways. Euclidean clusters are defined by the average of the point

values, and contain a 'centroid' or center point. Distances are thus measured by the distance

to that centroid. Non-Euclidean distances refer to 'clustroids', the point closest to other

points. Clustroids in turn can be defined in various ways.

🎓  'Constrained'

Constrained Clustering introduces 'semi-supervised' learning into this unsupervised method.

The relationships between points are flagged as 'cannot link' or 'must-link' so some rules are

forced on the dataset.

An example: If an algorithm is set free on a batch of unlabelled or semi-labelled data, the

clusters it produces may be of poor quality. In the example above, the clusters might group

'round music things' and 'square music things' and 'triangular things' and 'cookies'. If given

some constraints, or rules to follow ("the item must be made of plastic", "the item needs to be

able to produce music") this can help 'constrain' the algorithm to make better choices.

🎓  'Density'

https://twitter.com/dasani_decoded
https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf
https://wikipedia.org/wiki/Constrained_clustering
https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf


Data that is 'noisy' is considered to be 'dense'. The distances between points in each of its

clusters may prove, on examination, to be more or less dense, or 'crowded' and thus this data

needs to be analyzed with the appropriate clustering method. This article demonstrates the

difference between using K-Means clustering vs. HDBSCAN algorithms to explore a noisy

dataset with uneven cluster density.

Clustering algorithms

There are over 100 clustering algorithms, and their use depends on the nature of the data at hand.

Let's discuss some of the major ones:

Hierarchical clustering

If an object is classified by its proximity to a nearby object, rather than to one farther away, clusters

are formed based on their members' distance to and from other objects. Scikit-learn's agglomerative

clustering is hierarchical.

Infographic by Dasani Madipalli

https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html
https://twitter.com/dasani_decoded


Centroid clustering

This popular algorithm requires the choice of 'k', or the number of clusters to form, after which the

algorithm determines the center point of a cluster and gathers data around that point. K-means

clustering is a popular version of centroid clustering. The center is determined by the nearest mean,

thus the name. The squared distance from the cluster is minimized.

Infographic by Dasani Madipalli

Distribution-based clustering

Based in statistical modeling, distribution-based clustering centers on determining the probability

that a data point belongs to a cluster, and assigning it accordingly. Gaussian mixture methods belong

to this type.

Density-based clustering

Data points are assigned to clusters based on their density, or their grouping around each other. Data

points far from the group are considered outliers or noise. DBSCAN, Mean-shift and OPTICS belong

to this type of clustering.

Grid-based clustering

https://wikipedia.org/wiki/K-means_clustering
https://twitter.com/dasani_decoded


For multi-dimensional datasets, a grid is created and the data is divided amongst the grid's cells,

thereby creating clusters.

Preparing the data

Clustering as a technique is greatly aided by proper visualization, so let's get started by visualizing

our music data. This exercise will help us decide which of the methods of clustering we should most

effectively use for the nature of this data.

Open the notebook.ipynb file in this folder. Import the Seaborn package for good data visualization.

Append the song data .csv file. Load up a dataframe with some data about the songs. Get ready to

explore this data by importing the libraries and dumping out the data:

Check the first few lines of data:

name album artist artist_top_genre release_date length popularity

0 Sparky
Mandy & The

Jungle

Cruel

Santino
alternative r&b 2019 144000 48

1
shuga

rush

EVERYTHING

YOU HEARD

IS TRUE

Odunsi

(The

Engine)

afropop 2020 89488 30

2 LITT! LITT! AYLØ indie r&b 2018 207758 40

3

Confident

/ Feeling

Cool

Enjoy Your

Life

Lady

Donli
nigerian pop 2019 175135 14

pip install seaborn
python

import matplotlib.pyplot as plt 
import pandas as pd 
 
df = pd.read_csv("../data/nigerian-songs.csv") 
df.head()

python



Get some information about the dataframe:

Double-check for null values:

Looking good:

name album artist artist_top_genre release_date length popularity

4
wanted

you
rare.

Odunsi

(The

Engine)

afropop 2018 152049 25

df.info()
python

<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 530 entries, 0 to 529 
Data columns (total 16 columns): 
 #   Column            Non-Null Count  Dtype   
---  ------            --------------  -----   
 0   name              530 non-null    object  
 1   album             530 non-null    object  
 2   artist            530 non-null    object  
 3   artist_top_genre  530 non-null    object  
 4   release_date      530 non-null    int64   
 5   length            530 non-null    int64   
 6   popularity        530 non-null    int64   
 7   danceability      530 non-null    float64 
 8   acousticness      530 non-null    float64 
 9   energy            530 non-null    float64 
 10  instrumentalness  530 non-null    float64 
 11  liveness          530 non-null    float64 
 12  loudness          530 non-null    float64 
 13  speechiness       530 non-null    float64 
 14  tempo             530 non-null    float64 
 15  time_signature    530 non-null    int64   
dtypes: float64(8), int64(4), object(4) 
memory usage: 66.4+ KB

df.isnull().sum()
python



Describe the data:

release_date length popularity danceability acousticness energy inst

count 530 530 530 530 530 530 530

mean 2015.390566 222298.1698 17.507547 0.741619 0.265412 0.760623 0.01

std 3.131688 39696.82226 18.992212 0.117522 0.208342 0.148533 0.09

min 1998 89488 0 0.255 0.000665 0.111 0

25% 2014 199305 0 0.681 0.089525 0.669 0

50% 2016 218509 13 0.761 0.2205 0.7845 0.00

75% 2017 242098.5 31 0.8295 0.403 0.87575 0.00

max 2020 511738 73 0.966 0.954 0.995 0.91

name                0 
album               0 
artist              0 
artist_top_genre    0 
release_date        0 
length              0 
popularity          0 
danceability        0 
acousticness        0 
energy              0 
instrumentalness    0 
liveness            0 
loudness            0 
speechiness         0 
tempo               0 
time_signature      0 
dtype: int64

df.describe()
python



Look at the general values of the data. Note that popularity can be '0', which show songs that have no

ranking. Let's remove those shortly.

Use a barplot to find out the most popular genres:

✅  If you'd like to see more top values, change the top [:5]  to a bigger value, or remove it to see

all.

Note, when the top genre is described as 'Missing', that means that Spotify did not classify it, so let's

get rid of it:

import seaborn as sns 
 
top = df['artist_top_genre'].value_counts() 
plt.figure(figsize=(10,7)) 
sns.barplot(x=top[:5].index,y=top[:5].values) 
plt.xticks(rotation=45) 
plt.title('Top genres',color = 'blue')

python

df = df[df['artist_top_genre'] != 'Missing'] 
top = df['artist_top_genre'].value_counts() 
plt.figure(figsize=(10,7)) 

python



Now recheck the genres:

By far, the top three genres dominate this dataset, so let's concentrate on afro dancehall ,

afropop , and nigerian pop , also filtering the dataset to remove anything with a 0 popularity

value (meaning it was not classified with a popularity in the dataset and can be considered noise for

our purposes):

Do a quick test to see if the data correlates in any particularly strong way:

sns.barplot(x=top.index,y=top.values) 
plt.xticks(rotation=45) 
plt.title('Top genres',color = 'blue')

df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genr
df = df[(df['popularity'] > 0)] 
top = df['artist_top_genre'].value_counts() 
plt.figure(figsize=(10,7)) 
sns.barplot(x=top.index,y=top.values) 
plt.xticks(rotation=45) 
plt.title('Top genres',color = 'blue')

python



The only strong correlation is between energy and loudness, which is not too surprising, given that

loud music is usually pretty energetic. Otherwise, the correlations are relatively weak. It will be

interesting to see what a clustering algorithm can make of this data.

🎓  Note that correlation does not imply causation! We have proof of correlation but no proof

of causation. An amusing web site has some visuals that emphasize this point.

Is there any convergence in this dataset around a song's perceived popularity and danceability? A

FacetGrid shows that there are concentric circles that line up, regardless of genre. Could it be that

Nigerian tastes converge at a certain level of danceability for this genre?

corrmat = df.corr() 
f, ax = plt.subplots(figsize=(12, 9)) 
sns.heatmap(corrmat, vmax=.8, square=True);

python

https://tylervigen.com/spurious-correlations


✅  Try different datapoints (energy, loudness, speechiness) and more or different musical genres.

What can you discover? Take a look at the df.describe()  table to see the general spread of the

data points.

Data distribution

Are these three genres significantly different in the perception of their danceability, based on their

popularity? Examine our top three genres data distribution for popularity and danceability along a

given x and y axis.

You can discover concentric circles around a general point of convergence, showing the distribution

of points.

🎓  Note that this example uses a KDE (Kernel Density Estimate) graph that represents the

data using a continuous probability density curve. This allows us to interpret data when

working with multiple distributions.

In general, the three genres align loosely in terms of their popularity and danceability. Determining

clusters in this loosely-aligned data will be a challenge:

sns.set_theme(style="ticks") 
 
g = sns.jointplot( 
    data=df, 
    x="popularity", y="danceability", hue="artist_top_genre", 
    kind="kde", 
)

python



A scatterplot of the same axes shows a similar pattern of convergence:

In general, for clustering, you can use scatterplots to show clusters of data, so mastering this type of

visualization is very useful. In the next lesson, we will take this filtered data and use k-means

clustering to discover groups in this data that see to overlap in interesting ways.

sns.FacetGrid(df, hue="artist_top_genre", size=5) \ 
   .map(plt.scatter, "popularity", "danceability") \ 
   .add_legend()

python



🚀Challenge

In preparation for the next lesson, make a chart about the various clustering algorithms you might

discover and use in a production environment. What kinds of problems is the clustering trying to

address?

Post-lecture quiz

Review & Self Study

Before you apply clustering algorithms, as we have learned, it's a good idea to understand the nature

of your dataset. Read more onn this topic here

This helpful article walks you through the different ways that various clustering algorithms behave,

given different data shapes.

Assignment

Research other visualizations for clustering

K-Means clustering

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/28/
https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html
https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/


🎥  Click the image above for a video: Andrew Ng explains clustering

Pre-lecture quiz

In this lesson, you will learn how to create clusters using Scikit-learn and the Nigerian music dataset

you imported earlier. We will cover the basics of K-Means for Clustering. Keep in mind that, as you

learned in the earlier lesson, there are many ways to work with clusters and the method you use

depends on your data. We will try K-Means as it's the most common clustering technique. Let's get

started!

Terms you will learn about:

Silhouette scoring

Elbow method

Inertia

Variance

Introduction

K-Means Clustering is a method derived from the domain of signal processing. It is used to divide and

partition groups of data into 'k' clusters using a series of observations. Each observation works to

group a given datapoint closest to its nearest 'mean', or the center point of a cluster. The clusters can

be visualized as Voronoi diagrams, which include a point (or 'seed') and its corresponding region.

https://youtu.be/hDmNF9JG3lo
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/29/
https://wikipedia.org/wiki/K-means_clustering
https://wikipedia.org/wiki/Voronoi_diagram


infographic by Jen Looper

The K-Means clustering process executes in a three-step process:

1. The algorithm selects k-number of center points by sampling from the dataset. After this, it loops:

1. It assigns each sample to the nearest centroid

2. It creates new centroids by taking the mean value of all of the samples assigned to the

previous centroids.

3. Then, it calculates the difference between the new and old centroids and repeats until the

centroids are stablized.

One drawback of using K-Means includes the fact that you will need to establish 'k', that is the

number of centroids. Fortunately the 'elbow method' helps to estimate a good starting value for 'k'.

You'll try it in a minute.

Prerequisite

https://twitter.com/jenlooper
https://scikit-learn.org/stable/modules/clustering.html#k-means


You will work in this lesson's notebook.ipynb  file that includes the data import and preliminary

cleaning you did in the last lesson.

Preparation

Start by taking another look at the songs data. This data is a little noisy: by observing each column as

a boxplot, you can see outliers:

plt.figure(figsize=(20,20), dpi=200) 
 
plt.subplot(4,3,1) 
sns.boxplot(x = 'popularity', data = df) 
 
plt.subplot(4,3,2) 
sns.boxplot(x = 'acousticness', data = df) 
 
plt.subplot(4,3,3) 
sns.boxplot(x = 'energy', data = df) 
 
plt.subplot(4,3,4) 
sns.boxplot(x = 'instrumentalness', data = df) 
 
plt.subplot(4,3,5) 
sns.boxplot(x = 'liveness', data = df) 
 
plt.subplot(4,3,6) 
sns.boxplot(x = 'loudness', data = df) 
 
plt.subplot(4,3,7) 
sns.boxplot(x = 'speechiness', data = df) 
 
plt.subplot(4,3,8) 
sns.boxplot(x = 'tempo', data = df) 
 
plt.subplot(4,3,9) 
sns.boxplot(x = 'time_signature', data = df) 
 
plt.subplot(4,3,10) 
sns.boxplot(x = 'danceability', data = df) 
 
plt.subplot(4,3,11) 
sns.boxplot(x = 'length', data = df) 
 

python



You could go through the dataset and remove these outliers, but that would make the data pretty

minimal. For now, choose which columns you will use for your clustering exercise. Pick ones with

similar ranges and encode the artist_top_genre  column as numeric data:

plt.subplot(4,3,12) 
sns.boxplot(x = 'release_date', data = df)

from sklearn.preprocessing import LabelEncoder 
le = LabelEncoder() 
 
X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness
 
y = df['artist_top_genre'] 
 

python



Now you need to pick how many clusters to target. You know there are 3 song genres that we carved

out of the dataset, so let's try 3:

You see an array printed out with predicted clusters (0, 1,or 2) for each row of the dataframe.

Use this array to calculate a 'silhouette score':

Silhouette score

Look for a silhouette score closer to 1. This score varies from -1 to 1, and if the score is 1, the cluster is

dense and well-separated from other clusters. A value near 0 represents overlapping clusters with

samples very close to the decision boundary of the neighboring clusters.source.

Our score is .53, so right in the middle. This indicates that our data is not particularly well-suited to

this type of clustering, but let's continue.

Build a model

X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) 
 
y = le.transform(y)

from sklearn.cluster import KMeans 
 
nclusters = 3  
seed = 0 
 
km = KMeans(n_clusters=nclusters, random_state=seed) 
km.fit(X) 
 
# Predict the cluster for each data point 
 
y_cluster_kmeans = km.predict(X) 
y_cluster_kmeans

python

from sklearn import metrics 
score = metrics.silhouette_score(X, y_cluster_kmeans) 
score

python

https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam


Now you can import KMeans and start the clustering process. There are a few parts here that warrant

explaining:

🎓  range: These are the iterations of the clustering process

🎓  random_state: "Determines random number generation for centroid initialization."source

🎓  WCSS: "within-cluster sums of squares" measures the squared average distance of all the

points within a cluster to the cluster centroid.source.

🎓  Inertia: K-Means algorithms attempt to choose centroids to minimize 'inertia', "a measure

of how internally coherent clusters are."source. The value is appended to the wcss variable on

each iteration.

🎓  k-means++: In Scikit-learn you can use the 'k-means++' optimization, which "initializes

the centroids to be (generally) distant from each other, leading to probably better results than

random initialization.

Elbow method

Previously, you surmised that, because you have targeted 3 song genres, you should choose 3

clusters. But is that the case? Use the 'elbow method' to make sure.

from sklearn.cluster import KMeans 
wcss = [] 
 
for i in range(1, 11): 
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) 
    kmeans.fit(X) 
    wcss.append(kmeans.inertia_) 

python

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html#k-means


Use the wcss  variable that you built in the previous step to create a chart showing where the

'bend' in the elbow is, which indicates the optimum number of clusters. Maybe it is 3!

Display the clusters

Try the process again, this time setting three clusters, and display the clusters as a scatterplot:

Check the model's accuracy:

plt.figure(figsize=(10,5)) 
sns.lineplot(range(1, 11), wcss,marker='o',color='red') 
plt.title('Elbow') 
plt.xlabel('Number of clusters') 
plt.ylabel('WCSS') 
plt.show()

python

from sklearn.cluster import KMeans 
kmeans = KMeans(n_clusters = 3) 
kmeans.fit(X) 
labels = kmeans.predict(X) 
plt.scatter(df['popularity'],df['danceability'],c = labels) 
plt.xlabel('popularity') 
plt.ylabel('danceability') 
plt.show()

python



This model's accuracy is not very good, and the shape of the clusters gives you a hint why.

This data is too imbalanced, too little correlated and there is too much variance between the column

values to cluster well. In fact, the clusters that form are probably heavily influenced or skewed by the

three genre categories we defined above. That was a learning process!

In Scikit-learn's documentation, you can see that a model like this one, with clusters not very well

demarcated, has a 'variance' problem:

labels = kmeans.labels_ 
 
correct_labels = sum(y == labels) 
 
print("Result: %d out of %d samples were correctly labeled." % (correct_lab
 
print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))

python



Infographic from Scikit-learn

Variance

Variance is defined as "the average of the squared differences from the Mean."source In the context

of this clustering problem, it refers to data that the numbers of our dataset tend to diverge a bit too

much from the mean.

✅  This is a great moment to think about all the ways you could correct this issue. Tweak the data a

bit more? Use different columns? Use a different algorithm? Hint: Try scaling your data to normalize it

https://www.mathsisfun.com/data/standard-deviation.html
https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/


and test other columns.

Try this 'variance calculator' to understand the concept a bit more.

🚀Challenge

Spend some time with this notebook, tweaking parameters. Can you improve the accuracy of the

model by cleaning the data more (removing outliers, for example)? You can use weights to give more

weight to given data samples. What else can you do to create better clusters?

Hint: Try to scale your data. There's commented code in the notebook that adds standard scaling to

make the data columns resemble each other more closely in terms of range. You'll find that while the

silhouette score goes down, the 'kink' in the elbow graph smooths out. This is because leaving the

data unscaled allows data with less variance to carry more weight. Read a bit more on this problem

here.

Post-lecture quiz

Review & Self Study

Take a look at Stanford's K-Means Simulator here. You can use this tool to visualize sample data

points and determine its centroids. With fresh data, click 'update' to see how long it takes to find

convergence. You can edit the data's randomness, numbers of clusters and numbers of centroids.

Does this help you get an idea of how the data can be grouped?

Also, take a look at this handout on k-means from Stanford

Assignment

Try different clustering methods

https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php
https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/30/
https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html
https://stanford.edu/~cpiech/cs221/handouts/kmeans.html


Introduction to natural language

processing
This lesson covers a brief history and important concepts of computational linguistics focusing on

natural language processing.

Pre-lecture quiz

Introduction

NLP, as it is commonly known, is one of the best-known areas where machine learning has been

applied and used in production software.

✅  Can you think of software that you use every day that probably has some NLP embedded? What

about your word processing programs or mobile apps that you use regularly?

You will learn about how the ideas about languages developed and what the major areas of study

have been. You will also learn definitions and concepts about how computers process text, including

parsing, grammar, and identifying nouns and verbs. There are some coding tasks in this lesson, and

several important concepts are introduced that you will learn to code later on in the next lessons.

https://youtu.be/C75SiVhXjRM
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/31/


Computational linguistics is an area of research and development over many decades that studies

how computers can work with, and even understand, translate, and communicate with languages.

natural language processing (NLP) is a related field focused on how computers can process 'natural',

or human, languages. If you have ever dictated to your phone instead of typing or asked a virtual

assistant a question, your speech was converted into a text form and then processed or parsed from

the language you spoke. The detected keywords were then processed into a format that the phone or

assistant could understand and act on.

This is possible because someone wrote a computer program to do this. A few decades ago, some

science fiction writers predicted that people would mostly speak to their computers, and the

computers would always understand exactly what they meant. Sadly, it turned out to be a harder

problem that many imagined, and while it is a much better understood problem today, there are

significant challenges in achieving 'perfect' natural language processing when it comes to

understanding the meaning of a sentence. This is a particularly hard problem when it comes to

understanding humour or detecting emotions such as sarcasm in a sentence.

At this point, you may be remembering school classes where the teacher covered the parts of

grammar in a sentence. In some countries, students are taught grammar and linguistics as a

dedicated subject, but in many, these topics are included as part of learning a language: either your

first language in primary school (learning to read and write) and perhaps a second language in post-

primary, or high school. Don't worry if you are not an expert at differentiating nouns from verbs or

adverbs from adjectives!

If you struggle with the difference between the simple present and present progressive, you are not

alone. This is a challenging thing for many people, even native speakers of a language. The good

news is that computers are really good at applying formal rules, and you will learn to write code that

can parse a sentence as well as a human. The greater challenge you will examine later is

understanding the meaning, and sentiment, of a sentence.

Prerequisites

For this lesson, the main prerequisite is being able to read and understand the language of this

lesson. There are no math problems or equations to solve. While the original author wrote this lesson

in English, it is also translated into other languages, so you could be reading a translation. There are

examples where a number of different languages are used (to compare the different grammar rules of

different languages). These are not translated, but the explanatory text is, so the meaning should be

clear.

For the coding tasks, you will use Python and the examples are using Python 3.8.

In this section, you will need:



Python 3 programming language comprehension

this lesson uses input, loops, file reading, arrays

Visual Studio Code with its Python extension

(or the Python IDE of your choice)

TextBlob a simplified text processing library for Python

Follow the instructions on the TextBlob site to install it on your system (install the corpora as

well, as shown below)

💡  Tip: You can run Python directly in VS Code environments. Check the docs for more

information.

Conversing with Eliza

The history of trying to make computers understand human language goes back decades, and one of

the earliest scientists to consider natural language processing was Alan Turing. When Turing was

researching artificial intelligence in the 1950's, he considered if a conversational test could be given

to a human and computer (via typed correspondence) where the human in the conversation was not

sure if they were conversing with another human or a computer. If, after a certain length of

conversation, the human could not determine that the answers were from a computer or not, then

could the computer be said to be thinking?

pip install -U textblob 
python -m textblob.download_corpora

bash

https://github.com/sloria/TextBlob
https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-15963-cxa


The idea for this came from a party game called The Imitation Game where an interrogator is alone in

a room and tasked with determining which of two people (in another room) are male and female

respectively. The interrogator can send notes, and must try to think of questions where the written

answers reveal the gender of the mystery person. Of course, the players in the other room are trying

to trick the interrogator by answering questions in such as way as to mislead or confuse the

interrogator, whilst also giving the appearance of answering honestly.

In the 1960's an MIT scientist called Joseph Weizenbaum developed Eliza, a computer 'therapist' that

would ask the human questions and give the appearance of understanding their answers. However,

while Eliza could parse a sentence and identify certain grammatical constructs and keywords so as to

give a reasonable answer, it could not be said to understand the sentence. If Eliza was presented with

a sentence following the format "I am sad" it might rearrange and substitute words in the sentence to

form the response "How long have you been sad".

This gave the impression that Eliza understood the statement and was asking a follow-on question,

whereas in reality, it was changing the tense and adding some words. If Eliza could not identify a

keyword that it had a response for, it would instead give a random response that could be applicable

to many different statements. Eliza could be easily tricked, for instance if a user wrote "You are a

bicycle" it might respond with "How long have I been a bicycle?", instead of a more reasoned

response.

Note: You can read the original description of Eliza published in 1966 if you have an ACM

account. Alternately, read about Eliza on wikipedia

Task: Coding a basic conversational bot

https://youtu.be/QD8mQXaUFG4
https://wikipedia.org/wiki/ELIZA
https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract
https://wikipedia.org/wiki/ELIZA


A conversational bot, like Eliza, is a program that elicits user input and seems to understand and

respond intelligently. Unlike Eliza, our bot will not have several rules giving it the appearance of having

an intelligent conversation. Instead, out bot will have one ability only, to keep the conversation going

with random responses that might work in almost any trivial conversation.

Your steps when building a conversational bot:

1. Print instructions advising the user how to interact with the bot

2. Start a loop

1. Accept user input

2. If user has asked to exit, then exit

3. Process user input and determine response (in this case, the response is a random choice

from a list of possible generic responses)

4. Print response

3. loop back to step 2

Create this bot yourself in Python with the following random responses:

Here is some sample output to guide you (user input is on the lines starting with > ):

random_responses = ["That is quite interesting, please tell me more.", 
                    "I see. Do go on.", 
                    "Why do you say that?", 
                    "Funny weather we've been having, isn't it?", 
                    "Let's change the subject.", 
                    "Did you catch the game last night?"]

python

Hello, I am Marvin, the simple robot. 
You can end this conversation at any time by typing 'bye' 
After typing each answer, press 'enter' 
How are you today? 
> I am good thanks 
That is quite interesting, please tell me more. 
> today I went for a walk      
Did you catch the game last night? 
> I did, but my team lost 
Funny weather we've been having, isn't it? 
> yes but I hope next week is better 
Let's change the subject. 
> ok, lets talk about music 
Why do you say that? 
> because I like music! 



One possible solution to the task is here

✅  Stop and consider

1. Do you think the random responses would 'trick' someone into thinking that the bot actually

understood them?

2. What features would the bot need to be more effective?

3. If a bot could really 'understand' the meaning of a sentence, would it need to 'remember' the

meaning of previous sentences in a conversation too?

🚀Challenge

Choose one of the "stop and consider" elements above and either try to implement them in code or

write a solution on paper using pseudocode.

In the next lesson, you'll learn about a number of other approaches to parsing natural language and

machine learning.

Post-lecture quiz

Review & Self Study

Take a look at the references below as further reading opportunities.

References

1. Schubert, Lenhart, "Computational Linguistics", The Stanford Encyclopedia of Philosophy (Spring

2020 Edition), Edward N. Zalta (ed.), URL =

https://plato.stanford.edu/archives/spr2020/entries/computational-linguistics/.

2. Princeton University "About WordNet." WordNet. Princeton University. 2010.

Why do you say that? 
> bye 
It was nice talking to you, goodbye!

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/32/
https://plato.stanford.edu/archives/spr2020/entries/computational-linguistics/
https://wordnet.princeton.edu/


Assignment

Search for a bot

Common natural language processing

tasks and techniques
For most natural language processing tasks, the text to be processed must be broken down,

examined, and the results stored or cross referenced with rules and data sets. This allows the

programmer to derive the meaning or intent or only the frequency of terms and words in a text.

Pre-lecture quiz

Let's discover common techniques used in processing text. Combined with machine learning, these

techniques help you to analyse large amounts of text efficiently. Before applying ML to these tasks,

however, let's understand the problems encountered by an NLP specialist.

Tasks common to NLP

🎓  Tokenization   Probably the first thing most NLP algorithms have to do is split the text into

tokens, or words. While this sounds simple, having to account for punctuation and different

languages' word and sentence delimiters can make it tricky. Thought it might seem very

straightforward to split a sentence into words, you might have to use some other methods to

determine demarcations.

🎓  Embeddings

Word embeddings are a way to convert your text data numerically. This is done in a way so

that words with a similar meaning or words used together cluster together.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/33/
https://wikipedia.org/wiki/Word_embedding


✅  Try this interesting tool to experiment with word embeddings. Clicking on one word shows

clusters of similar words: 'toy' clusters with 'disney', 'lego', 'playstation', and 'console'.

🎓  Parsing & Part-of-speech Tagging

Every word that has been tokenized can be tagged as a part of speech - a noun, verb, or

adjective etc. The sentence the quick red fox jumped over the lazy brown dog

might be POS tagged as fox = noun, jumped = verb etc.

Parsing is recognizing what words are related to each other in a sentence - for instance

the quick red fox jumped  is an adjective-noun-verb sequence that is is separate

from lazy brown dog  sequence.

🎓  Word and Phrase Frequencies

A useful tool when analyzing a large body of text is to build a dictionary of every word or

phrase of interest and how often it appears. The phrase

the quick red fox jumped over the lazy brown dog  has a word frequency of 2

for the .

Example:

The Rudyard Kipling poem The Winners has a verse:

As phrase frequencies can be case insensitive or case sensitive as required, the phrase a friend

has a frequency of 2 and the  has a frequency of 6, and travels  is 2.

🎓  N-grams

What the moral? Who rides may read. 
When the night is thick and the tracks are blind 
A friend at a pinch is a friend, indeed, 
But a fool to wait for the laggard behind. 
Down to Gehenna or up to the Throne, 
He travels the fastest who travels alone.

https://projector.tensorflow.org/


A text can be split into sequences of words of a set length, a single word (unigram), two

words (bigrams), three words (trigrams) or any number of words (n-grams).

Example

For instance the quick red fox jumped over the lazy brown dog  with a n-gram score

of 2 produces the following n-grams:

1. the quick

2. quick red

3. red fox

4. fox jumped

5. jumped over

6. over the

7. the lazy

8. lazy brown

9. brown dog

It might be easier to visualise it as a sliding box over the sentence. Here it is for n-grams of 3 words,

the n-gram is in bold in each sentence:

1. the quick red fox jumped over the lazy brown dog

2. the quick red fox jumped over the lazy brown dog

3. the quick red fox jumped over the lazy brown dog

4. the quick red fox jumped over the lazy brown dog

5. the quick red fox jumped over the lazy brown dog

6. the quick red fox jumped over the lazy brown dog

7. the quick red fox jumped over the lazy brown dog

8. the quick red fox jumped over the lazy brown dog

🎓  Noun phrase Extraction

In most sentences, there is a noun that is the subject, or object of the sentence. In English, it

is often identifiable as having 'a' or 'an' or 'the' preceding it. Identifying the subject or object

of a sentence by 'extracting the noun phrase' is a common task in NLP when attempting to

understand the meaning of a sentence.

Example



In the sentence the quick red fox jumped over the lazy brown dog  there are 2 noun

phrases: quick red fox and lazy brown dog.

🎓  Sentiment analysis

A sentence or text can be analysed for sentiment, or how positive or negative it is. Sentiment

is measured in polarity and objectivity/subjectivity. Polarity is measured from -1.0 to 1.0

(negative to positive) and 0.0 to 1.0 (most objective to most subjective).

✅  Later you'll learn that there are different ways to determine sentiment using machine learning, but

one way is to have a list of words and phrases that are categorized as positive or negative by a human

expert and apply that model to text to calculate a polarity score. Can you see how this would work in

some circumstances and less well in others?

🎓  Inflection

Inflection enables you to take a word and get the singular or plural of the word.

🎓  Lemmatization

A lemma is the root or headword for a set of words, for instance flew, flies, flying have a

lemma of the verb fly.

There are also useful databases available for the NLP researcher, notably:

🎓  WordNet

WordNet is a database of words, synonyms, antonyms and many other details for every word

in many different languages. It is incredibly useful when attempting to build translations, spell

checkers, or language tools of any type.

NLP Libraries

https://wordnet.princeton.edu/


Luckily, you don't have to build all of these techniques yourself, as there are excellent Python libraries

available that make it much more accessible to developers who aren't specialized in natural language

processing or machine learning. The next lessons include more examples of these, but here you will

learn some useful examples to help you with the next task.

Let's use a library called TextBlob as it contains helpful APIs for tackling these types of tasks.

TextBlob "stands on the giant shoulders of NLTK and pattern, and plays nicely with both." It has a

considerable amount of ML embedded in its API.

Note: A useful Quick Start guide is available for TextBlob that is recommended for

experienced Python developers

When attempting to identify noun phrases, TextBlob offers several options of extractors to find noun

phrases. Take a look at ConllExtractor .

What's going on here? ConllExtractor is "A noun phrase extractor that uses chunk parsing

trained with the ConLL-2000 training corpus." ConLL-2000 refers to the Conference on

Computational Natural Language Learning (CoNLL-2000). Each year the conference hosted a

workshop to tackle a thorny NLP problem, and in 2000 it was noun chunking. A model was

trained on the Wall Street Journal, with "sections 15-18 as training data (211727 tokens) and

section 20 as test data (47377 tokens)". You can look at the procedures used here and the

results.

Task: Improving your bot with a little NLP

from textblob import TextBlob 
from textblob.np_extractors import ConllExtractor 
# import and create a Conll extractor to use later  
extractor = ConllExtractor() 
 
# later when you need a noun phrase extractor: 
user_input = input("> ") 
user_input_blob = TextBlob(user_input, np_extractor=extractor)  # note non-
np = user_input_blob.noun_phrases                                    

python

https://nltk.org/
https://github.com/clips/pattern
https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart
https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor
https://www.clips.uantwerpen.be/conll2000/chunking/
https://ifarm.nl/erikt/research/np-chunking.html


In the previous lesson you built a very simple Q&A bot. Now, you'll make Marvin a bit more

sympathetic by analyzing your input for sentiment and printing out a response to match the

sentiment. You'll also need to identify a noun_phrase  and ask about it.

Your steps when building a better conversational bot:

1. Print instructions advising the user how to interact with the bot

2. Start loop

1. Accept user input

2. If user has asked to exit, then exit

3. Process user input and determine appropriate sentiment response

4. If a noun phrase is detected in the sentiment, pluralize it and ask for more input on that topic

5. Print response

3. loop back to step 2

Here is the code snippet to determine sentiment using TextBlob. Note there are only four gradients of

sentiment response (you could have more if you like):

Here is some sample output to guide you (user input is on the lines with starting with >):

if user_input_blob.polarity <= -0.5: 
    response = "Oh dear, that sounds bad. " 
elif user_input_blob.polarity <= 0: 
    response = "Hmm, that's not great. " 
elif user_input_blob.polarity <= 0.5: 
    response = "Well, that sounds positive. " 
elif user_input_blob.polarity <= 1: 
    response = "Wow, that sounds great. "

python

Hello, I am Marvin, the friendly robot. 
You can end this conversation at any time by typing 'bye' 
After typing each answer, press 'enter' 
How are you today? 
> I am ok 
Well, that sounds positive. Can you tell me more? 
> I went for a walk and saw a lovely cat 
Well, that sounds positive. Can you tell me more about lovely cats? 
> cats are the best. But I also have a cool dog 
Wow, that sounds great. Can you tell me more about cool dogs? 
> I have an old hounddog but he is sick 
Hmm, that's not great. Can you tell me more about old hounddogs? 



One possible solution to the task is here

✅  Knowledge Check

1. Do you think the sympathetic responses would 'trick' someone into thinking that the bot actually

understood them?

2. Does identifying the noun phrase make the bot more 'believable'?

3. Why would extracting a 'noun phrase' from a sentence a useful thing to do?

🚀Challenge

Take a task in the prior knowledge check and try to implement it. Test the bot on a friend. Can it trick

them? Can you make your bot more 'believable?'

Post-lecture quiz

Review & Self Study

In the next few lessons you will learn more about sentiment analysis. Research this interesting

technique in articles such as these on KDNuggets

Assignment

Make a bot talk back

Translation and sentiment analysis with

ML

> bye 
It was nice talking to you, goodbye!

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/34/
https://www.kdnuggets.com/tag/nlp


In the previous lessons you learned how to build a basic bot using TextBlob, a library that embeds ML

behind-the-scenes to perform basic NLP tasks such as noun phrase extraction. Another important

challenge in computational linguistics is accurate translation of a sentence from one spoken or

written language to another.

Pre-lecture quiz

This is a very hard problem compounded by the fact that there are thousands of languages and each

can have very different grammar rules. One approach is to convert the formal grammar rules for one

language, such as English, into a non-language dependent structure, and then translate it by

converting back to another language. This means that you would take the following steps:

1. Identify or tag the words in input language into nouns, verbs etc.

2. Produce a direct translation of each word in the target language format

☘   Example: In English, the simple sentence I feel happy  is 3 words in the order

subject (I), verb (feel), adjective (happy). However, in the Irish language, the same sentence

has a very different grammatical structure - emotions like "happy" or "sad" are expressed as

being upon you. The English phrase I feel happy  in Irish would be Tá athas orm . A

literal translation would be Happy is upon me . Of course, an Irish speaker translating to

English would say I feel happy , not Happy is upon me , because they understand

the meaning of the sentence, even if the words and sentence structure are different. The

formal order for the sentence in Irish are verb (Tá or is), adjective (athas, or happy), subject

(orm, or upon me).

Translation

A naive translation program might translate words only, ignoring the sentence structure.

✅  If you've learned a second (or third or more) language as an adult, you might have started by

thinking in your native language, translating a concept word by word in your head to the second

language, and then speaking out your translation. This is similar to what naive translation computer

programs are doing. It's important to get past this phase to attain fluency!

Naive translation leads to bad (and sometimes hilarious) mistranslations: I feel happy

translates literally to Mise bhraitheann athas  in Irish. That means (literally) me feel happy

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/35/


and is not a valid Irish sentence. Even though English and Irish are languages spoken on two closely

neighboring islands, they are very different languages with different grammar structures.

You can watch some videos about Irish linguistic traditions such as this one

Machine learning approaches

So far, you've learned about the formal rules approach to natural language processing. Another

approach is to ignore the meaning of the words, and instead use machine learning to detect patterns.

This can work in translation if you have lots of text (a corpus) or texts (corpora) in both the origin and

target languages. For instance, consider the case of Pride and Prejudice, a well-known English novel

written by Jane Austen in 1813. If you consult the book in English and a human translation of the book

in French, you could detect phrases in one that are idiomatically translated into the other. You'll do

that in a minute.

For instance, when an English phrase such as I have no money  is translated literally to French, it

might become Je n'ai pas de monnaie . "Monnaie" is a tricky french 'false cognate', as

'money' and 'monnaie' are not synonymous. A better translation that a human might make would be

Je n'ai pas d'argent , because it better conveys the meaning that you have no money (rather

than 'loose change' which is the meaning of 'monnaie'). If a ML model has enough human

translations to build a model on, it can improve the accuracy of translations by identifying common

patterns in texts that have been previously translated by expert human speakers of both languages.

Task: Translation

You can use TextBlob to translate sentences. Try the famous first line of Pride and Prejudice:

TextBlob does a pretty good job at the translation: "C'est une vérité universellement reconnue, qu'un

homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!".

I would argue that TextBlob's translation is far more exact, in fact, than the 1932 French translation of

the book by V. Leconte and Ch. Pressoir:

from textblob import TextBlob 
 
blob = TextBlob( 
    "It is a truth universally acknowledged, that a single man in possessio
) 
print(blob.translate(to="fr")) 

python

https://www.youtube.com/watch?v=mRIaLSdRMMs


"C'est une vérité universelle qu'un celibataire pourvu d'une belle fortune doit avoir envie de se marier,

et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle residence,

cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la

propriété légitime de l'une ou l'autre de leurs filles."

In this case, the translation informed by ML does a better job than the human translator who is

unnecessarily putting words in the original author's mouth for 'clarity'.

What's going on here? and why is TextBlob so good at translation? Well, behind the scenes,

it's using Google translate, a sophisticated AI able to parse millions of phrases to predict the

best strings for the task at hand. There's nothing manual going on here and you need an

internet connection to use blob.translate .

✅  Try some more sentences. Which is better, ML or human translation? In which cases?

Sentiment analysis

Another area where machine learning can work very well is sentiment analysis. A non-ML approach to

sentiment is to identify words and phrases which are 'positive' and 'negative'. Then, given a new

piece of text, calculate the total value of the positive, negative and neutral words to identify the

overall sentiment.

This approach is easily tricked as you may have seen in the Marvin task - the sentence

Great, that was a wonderful waste of time, I'm glad we are lost on this dark road

is a sarcastic, negative sentiment sentence, but the simple algorithm detects 'great', 'wonderful',

'glad' as positive and 'waste', 'lost' and 'dark' as negative. The overall sentiment is swayed by these

conflicting words.

✅  Stop a second and think about how we convey sarcasm as human speakers. Tone inflection plays

a large role. Try to say the phrase "Well, that film was awesome" in different ways to discover how

your voice conveys meaning.

Machine learning approaches

The ML approach would be to hand gather negative and positive bodies of text - tweets, or movie

reviews, or anything where the human has given a score and a written opinion. Then NLP techniques

can be applied to opinions and scores, so that patterns emerge (e.g., positive movie reviews tend to



have the phrase 'Oscar worthy' more than negative movie reviews, or positive restaurant reviews say

'gourmet' much more than 'disgusting').

⚖   Example: If you worked in a politician's office and there was some new law being debated,

constituents might write to the office with emails supporting or emails against the particular

new law. Let's say you are tasked with reading the emails and sorting them in 2 piles, for and

against. If there were a lot of emails, you might be overwhelmed attempting to read them all.

Wouldn't it be nice if a bot could read them all for you, understand them and tell you in which

pile each email belonged?

One way to achieve that is to use Machine Learning. You would train the model with a portion

of the against emails and a portion of the for emails. The model would tend to associate

phrases and words with the against side and the for side, but it would not understand any of

the content, only that certain words and patterns were more likely to appear in an against or a

for email. You could test it with some emails that you had not used to train the model, and see

if it came to the same conclusion as you did. Then, once you were happy with the accuracy of

the model, you could process future emails without having to read each one.

✅  Does this process sound like processes you have used in previous lessons?

Exercise: sentimental sentences

Sentiment is measured in with a polarity of -1 to 1, meaning -1 is the most negative sentiment, and 1 is

the most positive. Sentiment is also measured with an 0 - 1 score for objectivity (0) and subjectivity

(1).

Take another look at Jane Austen's Pride and Prejudice. The text is available here at Project

Gutenberg. The sample below shows a short program which analyses the sentiment of first and last

sentences from the book and display its sentiment polarity and subjectivity/objectivity score. You

should us the TextBlob library (described above) to determine sentiment (you do not have to write

your own sentiment calculator) in the following task.

from textblob import TextBlob 
 
quote1 = """It is a truth universally acknowledged, that a single man in po
 
quote2 = """Darcy, as well as Elizabeth, really loved them; and they were b
 
sentiment1 = TextBlob(quote1).sentiment 

python

https://www.gutenberg.org/files/1342/1342-h/1342-h.htm


Your task is to determine, using sentiment polarity, if Pride and Prejudice has more absolutely positive

sentences than absolutely negative ones. For this task, you may assume that a polarity score of 1 or

-1 is absolutely positive or negative respectively.

Steps:

1. Download a copy of Pride and Prejudice from Project Gutenberg as a .txt file. Remove the

metadata at the start and end of the file, leaving only the original text

2. Open the file in Python and extract the contents as a string

3. Create a TextBlob using the book string

4. Analyse each sentence in the book in a loop

1. If the polarity is 1 or -1 store the sentence in an array or list of positive or negative messages

5. At the end, print out all the positive sentences and negative sentences (separately) and the

number of each.

Here is a sample solution.

✅  Knowledge Check

1. The sentiment is based on words used in the sentence, but does it code understand the words?

2. Do you think the sentiment polarity is accurate, or in other words, do you agree with the scores?

1. In particular, do you agree or disagree with the absolute positive polarity of the following

sentences?

“What an excellent father you have, girls!” said she, when the door was shut.

“Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the

result?” “I am perfectly convinced by it that Mr. Darcy has no defect.

How wonderfully these sort of things occur!

I have the greatest dislike in the world to that sort of thing.

Charlotte is an excellent manager, I dare say.

“This is delightful indeed!

I am so happy!

Your idea of the ponies is delightful.

sentiment2 = TextBlob(quote2).sentiment 
 
print(quote1 + " has a sentiment of " + str(sentiment1)) 
print(quote2 + " has a sentiment of " + str(sentiment2)) 
# outputs: 
# It is a truth universally acknowledged, that a single man in possession o
# Darcy, as well as Elizabeth, really loved them; and they were 
#     both ever sensible of the warmest gratitude towards the persons 
#      who, by bringing her into Derbyshire, had been the means of 
#      uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivit

https://www.gutenberg.org/files/1342/1342-h/1342-h.htm


2. The next 3 sentences were scored with an absolute positive sentiment, but on close reading,

they are not positive sentences. Why did the sentiment analysis think they were positive

sentences?

Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to

comfort you,” replied Elizabeth; “but it is wholly out of my power.

If I could but see you as happy!

Our distress, my dear Lizzy, is very great.

3. Do you agree or disagree with the absolute negative polarity of the following sentences?

Everybody is disgusted with his pride.

“I should like to know how he behaves among strangers.” “You shall hear then—but prepare

yourself for something very dreadful.

The pause was to Elizabeth s̓ feelings dreadful.

It would be dreadful!

✅  Any aficionado of Jane Austen will understand that she often uses her books to critique the more

ridiculous aspects of English Regency society. Elizabeth Bennett, the main character in Pride and

Prejudice, is a keen social observer (like the author) and her language is often heavily nuanced. Even

Mr. Darcy (the love interest in the story) notes Elizabeth's playful and teasing use of language: "I have

had the pleasure of your acquaintance long enough to know that you find great enjoyment in

occasionally professing opinions which in fact are not your own."

🚀Challenge

Can you make Marvin even better by extracting other features from the user input?

Post-lecture quiz

Review & Self Study

There are many ways to extract sentiment from text. Think of the business applications that might

make use of this technique. Think about how it can go awry. Read more about sophisticated

enterprise-ready systems that analyze sentiment such as Azure Text Analysis. Test some of the Pride

and Prejudice sentences above and see if it can detect nuance.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/36/
https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-15963-cxa


Assignment

Poetic license

Introduction to time series forecasting

Sketchnote by Tomomi Imura

In this lesson and the following one, you will learn a bit about time series forecasting, an interesting

and valuable part of a ML scientist's repertoire that is a bit lesser known than other topics. Time

series forecasting is a sort of crystal ball: based on past performance of a variable such as price, you

can predict its future potential value.

https://www.twitter.com/girlie_mac


Pre-lecture quiz

It's a useful and interesting field with real value to business, given its direct application to problems of

pricing, inventory, and supply chain issues. While deep learning techniques have started to be used

to gain more insights in the prediction of future performance, time series forecasting remains a field

greatly informed by classic ML techniques.

Penn State's useful time series curriculum can be found here

Introduction

Supposing you maintain an array of smart parking meters that provide data about how often they are

used and for how long over time. What if you could generate revenue to maintain your streets by

slightly augmenting the prices of the meters when there is greater demand for them? What if you

could predict, based on the meter's past performance, its future value according to the laws of

supply and demand? This is a challenge that could be tackled by time series forecasting. It wouldn't

make those folks in search of a rare parking spot in busy times very happy to have to pay more for it,

but it would be a sure way to generate revenue to clean the streets!

Let's explore some of the types of time series algorithms and start a notebook to clean and prepare

some data. The data you will analyze is taken from the GEFCom2014 forecasting competition. It

consists of 3 years of hourly electricity load and temperature values between 2012 and 2014. Given

https://youtu.be/wGUV_XqchbE
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/39/
https://online.stat.psu.edu/stat510/lesson/1


the historical patterns of electricity load and temperature, you can predict future values of electricity

load. In this example, you'll learn how to forecast one time step ahead, using historical load data only.

Before starting, however, it's useful to understand what's going on behind the scenes.

Some definitions

When encountering the term 'time series' you need to understand its use in several different

contexts.

Time series

In mathematics, "a time series is a series of data points indexed (or listed or graphed) in time order.

Most commonly, a time series is a sequence taken at successive equally spaced points in time." An

example of a time series is the daily closing value of the Dow Jones Industrial Average. The use of

time series plots and statistical modeling is frequently encountered in signal processing, weather

forecasting, earthquake prediction, and other fields where events occur and data points can be

plotted over time.

Time series analysis

Time series analysis is the analysis of the above mentioned time series data. Time series data can

take distinct forms, including 'interrupted time series' which detects patterns in a time series'

evolution before and after an interrupting event. The type of analysis needed for the time series

depends on the nature of the data. Time series data itself can take the form of series of numbers or

characters.

The analysis be performed using a variety of methods, including frequency-domain and time-domain,

linear and nonlinear, and more. Learn more about the may ways to analyze this type of data.

Time series forecasting

Time series forecasting is the use of a model to predict future values based on patterns displayed by

previously gathered data as it occurred in the past. While it is possible to use regression models to

explore time series data, with time indices as x variables on a plot, this type of data is best analyzed

using special types of models.

Time series data is a list of ordered observations, unlike data that can be analyzed by linear

regression. The most common one is ARIMA, an acronym that stands for "Autoregressive Integrated

https://wikipedia.org/wiki/Time_series
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm


Moving Average".

ARIMA models "relate the present value of a series to past values and past prediction errors." They

are most appropriate for analyzing time-domain data, where data is ordered over time.

There are several types of ARIMA models, which you can learn about here and which you will

touch on in the next lesson.

In the next lesson, you will build an ARIMA model using Univariate Time Series, which focuses on one

variable that changes its value over time. An example of this type of data is this dataset that records

the monthly C02 concentration at the Mauna Loa Observatory:

CO2 YearMonth Year Month

330.62 1975.04 1975 1

331.40 1975.13 1975 2

331.87 1975.21 1975 3

333.18 1975.29 1975 4

333.92 1975.38 1975 5

333.43 1975.46 1975 6

331.85 1975.54 1975 7

330.01 1975.63 1975 8

328.51 1975.71 1975 9

328.41 1975.79 1975 10

329.25 1975.88 1975 11

330.97 1975.96 1975 12

✅  Identify the variable that changes over time in this dataset

https://online.stat.psu.edu/stat510/lesson/1/1.1
https://people.duke.edu/~rnau/411arim.htm
https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm
https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm


Time Seriesdata characteristics to consider

When looking at time series data, you might notice that it has certain characteristics that you need to

take into account and mitigate to better understand its patterns. If you consider time series data as

potentially providing a 'signal' that you want to analyze, these characteristics can be thought of as

'noise'. You often will need to reduce this 'noise' by offsetting some of these characteristics using

some statistical techniques.

Trends

Measurable increases and decreases over time. Read more about how to use and, if necessary,

remove trends from your time series.

Seasonality

Periodic fluctuations, such as holiday rushes that might affect sales, for example. Take a look at how

different types of plots display seasonality in data.

Outliers

Outliers are far away from the standard data variance.

Long-run cycle

Independent of seasonality, data might display a long-run cycle such as an economic down-turn that

lasts longer than a year.

Constant variance

Over time, some data display constant fluctuations, such as energy usage per day and night.

Abrupt changes

The data might display an abrupt change that might need further analysis. The abrupt shuttering of

businesses due to COVID, for example, caused changes in data.

✅  Here is a sample time series plot showing daily in-game currency spent over a few years. Can you

identify any of the characteristics listed above in this data?

https://online.stat.psu.edu/stat510/lesson/1/1.1
https://machinelearningmastery.com/time-series-trends-in-python
https://machinelearningmastery.com/time-series-seasonality-with-python/
https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm
https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python


Getting started with power usage data

Let's get started creating a time series model to predict future power usage given past usage.

The data in this example is taken from the GEFCom2014 forecasting competition. It consists

of 3 years of hourly electricity load and temperature values between 2012 and 2014.

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J.

Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and

beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September,

2016.

In the working  folder of this lesson, open the notebook.ipynb  file. Start by adding libraries

that will help you load and visualize data

Note, you are using the files from the included common  folder which set up your environment and

handle downloading the data.

Next, examine the data as a dataframe

import os 
import matplotlib.pyplot as plt 
from common.utils import load_data 
%matplotlib inline

python



You can see that there are two columns representing date and load:

load

2012-01-01 00 0000 2698.0

2012-01-01 01 0000 2558.0

2012-01-01 02 0000 2444.0

2012-01-01 03 0000 2402.0

2012-01-01 04 0000 2403.0

Now, plot the data:

data_dir = './data' 
energy = load_data(data_dir)[['load']] 
energy.head()

python

energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) 
plt.xlabel('timestamp', fontsize=12) 
plt.ylabel('load', fontsize=12) 
plt.show()

python



Now, plot the first week of July 2014

A beautiful plot! Take a look at these plots and see if you can determine any of the characteristics

listed above. What can we surmise just by visualizing the data?

In the next lesson, you will create an ARIMA model to create some forecasts.

🚀Challenge

Make a list of all the industries and areas of inquiry you can think of that would benefit from time

series forecasting. Can you think of an application of these techniques in the arts? In Econometrics?

Ecology? Retail? Industry? Finance? Where else?

Post-lecture quiz

energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15
plt.xlabel('timestamp', fontsize=12) 
plt.ylabel('load', fontsize=12) 
plt.show()

python

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/40/


Review & Self Study

Although we won't cover them here, neural networks are sometimes used to enhance classic

methods of time series forecasting. Read more about them in this article

Assignment

Visualize some more time series

Time series forecasting with ARIMA
In the previous lesson, you learned a bit about time series forecasting and loaded a dataset showing

the fluctuations of electrical load over a time period.

🎥  Click the image above for a video: A brief introduction to ARIMA models. The example is

done in R, but the concepts are universal.

Pre-lecture quiz

https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412
https://youtu.be/IUSk-YDau10
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/41/


In this lesson, you will discover a specific way to build models with ARIMA: AutoRegressive Integrated

Moving Average. ARIMA models are particularly suited to fit data that shows non-stationarity.

🎓  Stationarity, from a statistical context, refers to data whose distribution does not change

when shifted in time. Non-stationary data, then, shows fluctuations due to trends that must

be transformed to be analyzed. Seasonality, for example, can introduce fluctuations in data

and can be eliminated by a process of 'seasonal-differencing'.

🎓  Differencing data, again from a statistical context, refers to the process of transforming

non-stationary data to make it stationary by removing its non-constant trend. "Differencing

removes the changes in the level of a time series, eliminating trend and seasonality and

consequently stabilizing the mean of the time series." Paper by Shixiong et al

Let's unpack the parts of ARIMA to better understand how it helps us model time series and help us

make predictions against it.

AR - for AutoRegressive

Autoregressive models, as the name implies, look 'back' in time to analyze previous values in your

data and make assumptions about them. These previous values are called 'lags'. An example would

be data that shows monthly sales of pencils. Each month's sales total would be considered an

'evolving variable' in the dataset. This model is built as the "evolving variable of interest is regressed

on its own lagged (i.e., prior) values." wikipedia

I - for Integrated

As opposed to the similar 'ARMA' models, the 'I' in ARIMA refers to its integrated aspect. The data is

'integrated' when differencing steps are applied so as to eliminate non-stationarity.

MA - for Moving Average

https://wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://wikipedia.org/wiki/Stationary_process
https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing
https://arxiv.org/abs/1904.07632
https://wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://wikipedia.org/wiki/Order_of_integration


The moving-average aspect of this model refers to the output variable that is determined by

observing the current and past values of lags.

Bottom line: ARIMA is used to make a model fit the special form of time series data as closely as

possible.

Preparation

Open the /working  folder in this lesson and find the notebook.ipynb  file. Run the notebook

to load the statsmodels  Python library; you will need this for ARIMA models.

Load necessary libraries

Now, load up several more libraries useful for plotting data:

Load the data

Load the data from the /data/energy.csv  file into a Pandas dataframe and take a look:

import os 
import warnings 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
import datetime as dt 
import math 
 
from pandas.plotting import autocorrelation_plot 
from statsmodels.tsa.statespace.sarimax import SARIMAX 
from sklearn.preprocessing import MinMaxScaler 
from common.utils import load_data, mape 
from IPython.display import Image 
 
%matplotlib inline 
pd.options.display.float_format = '{:,.2f}'.format 
np.set_printoptions(precision=2) 
warnings.filterwarnings("ignore") # specify to ignore warning messages

python

https://wikipedia.org/wiki/Moving-average_model


Plot the data

Plot all the available energy data from January 2012 to December 2014. There should be no surprises

as we saw this data in the last lesson:

Now, let's build a model!

Create training and testing datasets

Now your data is loaded, so you can separate it into train and test sets. You'll train your model on the

train set. As usual, after the model has finished training, you'll evaluate its accuracy using the test set.

You need to ensure that the test set covers a later period in time from the training set to ensure that

the model does not gain information from future time periods.

Allocate a two-month period from September 1 to October 31, 2014 to the training set. The test set

will include the two-month period of November 1 to December 31, 2014.

Since this data reflects the daily consumption of energy, there is a strong seasonal pattern, but the

consumption is most similar to the consumption in more recent days. You can visualize the

differences:

energy = load_data('./data')[['load']] 
energy.head(10)

python

energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) 
plt.xlabel('timestamp', fontsize=12) 
plt.ylabel('load', fontsize=12) 
plt.show()

python

train_start_dt = '2014-11-01 00:00:00' 
test_start_dt = '2014-12-30 00:00:00'    

python

energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][
    .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}),

python



Therefore, using a relatively small window of time for training the data should be sufficient.

Note: Since the function we use to fit the ARIMA model uses in-sample validation during

fitting, we will omit validation data.

Prepare the data for training

Now, you need to prepare the data for training by performing two tasks:

1. Filter the original dataset to include only the aforementioned time periods per set and only

including the needed column 'load' plus the date:

    .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) 
plt.xlabel('timestamp', fontsize=12) 
plt.ylabel('load', fontsize=12) 
plt.show()

train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < te
test = energy.copy()[energy.index >= test_start_dt][['load']] 
 

python



You can see the shape of the data:

Training data shape: (1416, 1) Test data shape: (48, 1)

1. Scale the data to be in the range (0, 1).

Now, visualize the original vs. scaled data:

The original data

print('Training data shape: ', train.shape) 
print('Test data shape: ', test.shape)

scaler = MinMaxScaler() 
train['load'] = scaler.fit_transform(train) 
train.head(10)

python

energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][
train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=1
plt.show()

python



The scaled data

Now that you have calibrated the scaled data, you can scale the test data:

Implement ARIMA

It's time to implement ARIMA! You'll now use the statsmodels  library that you installed earlier.

Now you need to follow several steps

1. Define the model by calling SARIMAX()  and passing in the model parameters: p, d, and q

parameters, and P, D, and Q parameters.

2. The model is prepared on the training data by calling the fit() function.

3. Predictions can be made by calling the forecast()  function and specifying the number of

steps (the horizon ) to forecast

🎓  What are all these parameters for? In an ARIMA model there are 3 parameters that are

used to help model the major aspects of a time series: seasonality, trend, and noise. These

parameters are:

test['load'] = scaler.transform(test) 
test.head()

python



p : the parameter associated with the auto-regressive aspect of the model, which incorporates past

values. d : the parameter associated with the integrated part of the model, which affects the

amount of differencing (🎓  remember differencing 👆 ?) to apply to a time series. q : the parameter

associated with the moving-average part of the model.

Note: If your data has a seasonal aspect - which this one does - , we use a seasonal ARIMA

model (SARIMA). In that case you need to use another set of parameters: P , D , and Q

which describe the same associations as p , d , and q , but correspond to the seasonal

components of the model.

Start by setting your preferred horizon value. Let's try 3 hours:

Selecting the best values for an ARIMA model's parameters can be challenging as it's somewhat

subjective and time intensive. You might consider using an auto_arima()  function from the

pyramid  library, but for now try some manual selections to find a good model.

A table of results is printed.

You've built your first model! Now we need to find a way to evaluate it.

Evaluate your model

To evaluate your model, you can perform the so-called walk forward  validation. In practice, time

series models are re-trained each time a new data becomes available. This allows the model to make

# Specify the number of steps to forecast ahead 
HORIZON = 3 
print('Forecasting horizon:', HORIZON, 'hours')

python

order = (4, 1, 0) 
seasonal_order = (1, 1, 0, 24) 
 
model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) 
results = model.fit() 
 
print(results.summary())

python

https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html


the best forecast at each time step.

Starting at the beginning of the time series using this technique, train the model on the train data set.

Then make a prediction on the next time step. The prediction is evaluated against the known value.

The training set is then expanded to include the known value and the process is repeated.

Note: You should keep the training set window fixed for more efficient training so that every

time you add a new observation to the training set, you remove the observation from the

beginning of the set.

This process provides a more robust estimation of how the model will perform in practice. However, it

comes at the computation cost of creating so many models. This is acceptable if the data is small or

if the model is simple, but could be an issue at scale.

Walk-forward validation is the gold standard of time series model evaluation and is recommended for

your own projects.

First, create a test data point for each HORIZON step.

load load+1 load+2

2014-12-30 00 0000 0.33 0.29 0.27

2014-12-30 01 0000 0.29 0.27 0.27

2014-12-30 02 0000 0.27 0.27 0.30

2014-12-30 03 0000 0.27 0.30 0.41

2014-12-30 04 0000 0.30 0.41 0.57

test_shifted = test.copy() 
 
for t in range(1, HORIZON): 
    test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')
     
test_shifted = test_shifted.dropna(how='any') 
test_shifted.head(5)

python



The data is shifted horizontally according to its horizon point.

Now, make predictions on your test data using this sliding window approach in a loop the size of the

test data length:

You can watch the training occurring:

2014-12-30 00 0000 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236,

0.2900626678603402, 0.2739480752014323]

2014-12-30 01 0000 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402,

0.2739480752014323, 0.26812891674127126]

2014-12-30 02 0000 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323,

0.26812891674127126, 0.3025962399283795]

Now you can compare the predictions to the actual load:

%%time 
training_window = 720 # dedicate 30 days (720 hours) for training 
 
train_ts = train['load'] 
test_ts = test_shifted 
 
history = [x for x in train_ts] 
history = history[(-training_window):] 
 
predictions = list() 
 
order = (2, 1, 0) 
seasonal_order = (1, 1, 0, 24) 
 
for t in range(test_ts.shape[0]): 
    model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_ord
    model_fit = model.fit() 
    yhat = model_fit.forecast(steps = HORIZON) 
    predictions.append(yhat) 
    obs = list(test_ts.iloc[t]) 
    # move the training window 
    history.append(obs[0]) 
    history.pop(0) 
    print(test_ts.index[t]) 
    print(t+1, ': predicted =', yhat, 'expected =', obs)

python



timestamp h prediction actual

0 2014-12-30 00 0000 t+1 3,008.74 3,023.00

1 2014-12-30 01 0000 t+1 2,955.53 2,935.00

2 2014-12-30 02 0000 t+1 2,900.17 2,899.00

3 2014-12-30 03 0000 t+1 2,917.69 2,886.00

4 2014-12-30 04 0000 t+1 2,946.99 2,963.00

Observe the hourly data's prediction, compared to the actual load. How accurate is this?

Check the accuracy of your model by testing its mean absolute percentage error (MAPE) over all the

predictions.

🧮  Show me the math

MAPE is used to show prediction accuracy as a ratio defined by the above formula. The

difference between actual  and predicted  is divided by the actual . "The absolute value in this

calculation is summed for every forecasted point in time and divided by the number of fitted

points n." wikipedia

If this equation is expressed in code:

eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, 
eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] 
eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', va
eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() 
eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['pred
eval_df.head()

python

t t t

https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/
https://wikipedia.org/wiki/Mean_absolute_percentage_error


You can calculate one step's MAPE:

One step forecast MAPE: 0.5570581332313952 %

And while you're at it, print the multi-step forecast MAPE:

Multi-step forecast MAPE: 1.1460048657704118 %

A nice low number is best: consider that a forecast that has a MAPE of 10 is off by 10%.

But as always, it's easier to see this kind of accuracy measurement visually, so let's plot it:

if(HORIZON > 1): 
    eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / ev
    print(eval_df.groupby('h')['APE'].mean())

python

print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['pre
python

print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['ac
python

 if(HORIZON == 1): 
    ## Plotting single step forecast 
    eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b
 
else: 
    ## Plotting multi step forecast 
    plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] 
    for t in range(1, HORIZON+1): 
        plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['predictio
 
    fig = plt.figure(figsize=(15, 8)) 
    ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', lin
    ax = fig.add_subplot(111) 
    for t in range(1, HORIZON+1): 
        x = plot_df['timestamp'][(t-1):] 
        y = plot_df['t+'+str(t)][0:len(x)] 
        ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.
     
    ax.legend(loc='best') 
     

python



🏆  A very nice plot, showing a model with good accuracy. Well done!

🚀Challenge

Dig into the ways to test the accuracy of a Time Series Model. We touch on MAPE in this lesson, but

are there other methods you could use? Research them and annotate them. A helpful document can

be found here

Post-lecture quiz

Review & Self Study

This lesson touches on only the basics of Time Series Forecasting with ARIMA. Take some time to

deepen your knowledge by digging into this repository and its various model types to learn other

ways to build Time Series models.

plt.xlabel('timestamp', fontsize=12) 
plt.ylabel('load', fontsize=12) 
plt.show()

https://otexts.com/fpp2/accuracy.html
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/42/
https://microsoft.github.io/forecasting/


Assignment

A new ARIMA model

Introduction to Reinforcement Learning

and Q-Learning

🎥  Click the image above to hear Dmitry discuss Reinforcement Learning

Pre-lecture quiz

In this lesson, we will explore the world of Peter and the Wolf, inspired by a musical fairy tale by a

Russian composer, Sergei Prokofiev. We will use Reinforcement Learning to let Peter explore his

environment, collect tasty apples and avoid meeting the wolf.

Prerequisites and Setup

https://www.youtube.com/watch?v=lDq_en8RNOo
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/43/
https://en.wikipedia.org/wiki/Peter_and_the_Wolf
https://en.wikipedia.org/wiki/Sergei_Prokofiev


In this lesson, we will be experimenting with some code in Python. So you are expected to be able to

run the Jupyter Notebook code from this lesson, either on your computer, or somewhere in the cloud.

You can open the lesson notebook and continue reading the material there, or continue reading here,

and run the code in your favorite Python environment.

Note: If you are opening this code from the cloud, you also need to fetch rlboard.py  file,

because notebook code uses it. Put it into the same directory with the notebook.

Introduction

Reinforcement Learning (RL) is a learning technique that allows us to learn an optimal behavior of an

agent in some environment by running many experiments. An agent in this environment should have

some goal, defined by a reward function.

The Environment

For simplicity, let's consider Peter's world to be a square board of size width  x height , like this:

Each cell in this board can either be:



ground, on which Peter and other creatures can walk

water, on which you obviously cannot walk

a tree or grass - a place where you can take some rest

an apple, which represents something Peter would be glad to find in order to feed himself

a wolf, which is dangerous and should be avoided

There is a separate Python module, rlboard.py , which contains the code to work with this

environment. Because this code is not important for understanding our concepts, we will just import

the module and use it to create the sample board (code block 1):

This code should print the picture of the environment similar to the one above.

Actions and Policy

In our example, Peter's goal would be to find an apple, while avoiding the wolf and other obstacles. To

do this, he can essentially walk around until he finds and apple. Therefore, at any position he can

chose between one of the following actions: up, down, left and right. We will define those actions as a

dictionary, and map them to pairs of corresponding coordinate changes. For example, moving right

( R ) would correspond to a pair (1,0) . (code block 2)

The strategy of our agent (Peter) is defined by so-called policy. A policy is a function that returns the

action at any given state. In our case, the state of the problem is represented by the board, including

the current position of the player.

The goal of reinforcement learning is to eventually learn a good policy that will allow us to solve the

problem efficiently. However, as a baseline, let's consider the simplest policy called random walk.

from rlboard import * 
 
width, height = 8,8 
m = Board(width,height) 
m.randomize(seed=13) 
m.plot()

python

actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } 
action_idx = { a : i for i,a in enumerate(actions.keys()) }

python



Random walk

Let's first solve our problem by implementing a random walk strategy. With random walk, we will

randomly chose the next action from allowed ones, until we reach the apple (code block 3).

The call to walk  should return us the length of corresponding path, which can vary from one run to

another. We can run the walk experiment a number of times (say, 100), and print the resulting

statistics (code block 4):

def random_policy(m): 
    return random.choice(list(actions)) 
 
def walk(m,policy,start_position=None): 
    n = 0 # number of steps 
    # set initial position 
    if start_position: 
        m.human = start_position  
    else: 
        m.random_start() 
    while True: 
        if m.at() == Board.Cell.apple: 
            return n # success! 
        if m.at() in [Board.Cell.wolf, Board.Cell.water]: 
            return -1 # eaten by wolf or drowned 
        while True: 
            a = actions[policy(m)] 
            new_pos = m.move_pos(m.human,a) 
            if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: 
                m.move(a) # do the actual move 
                break 
        n+=1 
 
walk(m,random_policy)

python

def print_statistics(policy): 
    s,w,n = 0,0,0 
    for _ in range(100): 
        z = walk(m,policy) 
        if z<0: 
            w+=1 

python



Note that the average length of a path is around 30-40 steps, which is quite a lot, given the fact that

the average distance to the nearest apple is around 5-6 steps.

You can also see how Peter's movement looks like during random walk:

Reward Function

To make out policy more intelligent, we need to understand which moves are "better" than others. To

do this, we need to define our goal. The goal can be defined in terms of reward function, that will

return some score value for each state. The higher the number - the better is the reward function.

(code block 5)

        else: 
            s += z 
            n += 1 
    print(f"Average path length = {s/n}, eaten by wolf: {w} times") 
 
print_statistics(random_policy)

move_reward = -0.1 
goal_reward = 10 
end_reward = -10 
 

python



An interesting thing about reward function is that in most of the cases we are only given substantial

reward at the end of the game. It means that out algorithm should somehow remember "good" steps

that lead to positive reward at the end, and increase their importance. Similarly, all moves that lead to

bad results should be discouraged.

Q-Learning

An algorithm that we will discuss here is called Q-Learning. In this algorithm, the policy is defined by

a function (or a data structure) called Q-Table. It records the "goodness" of each of the actions in a

given state.

It is called Q-Table because it is often convenient to represent it as a table, or multi-dimensional array.

Since our board has dimensions width  x height , we can represent Q-Table by a numpy array

with shape width  x height  x len(actions) : (code block 6)

Notice that we initially initialize all the values of Q-Table with equal value, in our case - 0.25. That

corresponds to the "random walk" policy, because all moves in each state are equally good. We can

pass the Q-Table to the plot  function in order to visualize the table on the board: m.plot(Q) .

def reward(m,pos=None): 
    pos = pos or m.human 
    if not m.is_valid(pos): 
        return end_reward 
    x = m.at(pos) 
    if x==Board.Cell.water or x == Board.Cell.wolf: 
        return end_reward 
    if x==Board.Cell.apple: 
        return goal_reward 
    return move_reward

Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)
python



In the center of each cell there is an "arrow" that indicates the preferred direction of movement. Since

all directions are equal, a dot is displayed.

Now we need to run the simulation, explore our environment, and learn a better distribution of Q-

Table values, which will allow us to find the path to the apple much faster.

Essence of Q-Learning: Bellman Equation

Once we start moving, each action will have a corresponding reward, i.e. we can theoretically select

the next action based on the highest immediate reward. However, in most of the states the move will

not achieve our goal or reaching the apple, and thus we cannot immediately decide which direction is

better.

It is not the immediate result that matters, but rather the final result, which we will obtain at

the end of the simulation.

In order to account for this delayed reward, we need to use the principles of dynamic programming,

which allows us to think about out problem recursively.

Suppose we are now at the state s, and we want to move to the next state s'. By doing so, we will

receive the immediate reward r(s,a), defined by reward function, plus some future reward. If we

suppose that our Q-Table correctly reflects the "attractiveness" of each action, then at state s' we

https://en.wikipedia.org/wiki/Dynamic_programming


will chose an action a that corresponds to maximum value of Q(s',a'). Thus, the best possible future

reward we could get at state s will be defined as max Q(s',a') (maximum here is computed over all

possible actions a' at state s'.

This gives the Bellman formula for calculating the value of Q-Table at state s, given action a:

Here γ is the so-called discount factor that determines to which extent you should prefer current

reward over the future reward and vice versa.

Learning Algorithm

Given the equation above, we can now write pseudo-code for our leaning algorithm:

Initialize Q-Table Q with equal numbers for all states and actions

Set learning rate α ← 1

Repeat simulation many times

1. Start at random position

2. Repeat

1. Select an action a at state s

2. Execute action by moving to a new state s'

3. If we encounter end-of-game condition, or total reward is too small - exit simulation

4. Compute reward r at the new state

5. Update Q-Function according to Bellman equation: Q(s,a) ← (1-α)Q(s,a)+α(r+γ

max Q(s',a'))

6. s ← s'

7. Update the total reward and decrease α.

Exploit vs. Explore

In the algorithm above, we did not specify how exactly we should choose an action at step 2.1. If we

are choosing the action randomly, we will randomly explore the environment, and we are quite likely

to die often as well as explore areas where we would not normally go. An alternative approach would

be to exploit the Q-Table values that we already know, and thus to choose the best action (with

highers Q-Table value) at state s. This, however, will prevent us from exploring other states, and quite

likely we might not find the optimal solution.

a'

a'



Thus, the best approach is to balance between exploration and exploitation. This can be done by

choosing the action at state s with probabilities proportional to values in Q-Table. In the beginning,

when Q-Table values are all the same, it would correspond to a random selection, but as we learn

more about our environment, we would be more likely to follow the optimal route while allowing the

agent to choose the unexplored path once in a while.

Python Implementation

Now we are ready to implement the learning algorithm. Before that, we also need some function that

will convert arbitrary numbers in the Q-Table into a vector of probabilities for corresponding actions:

(code block 7)

We add a few eps  to the original vector in order to avoid division by 0 in the initial case, when all

components of the vector are identical.

The actual learning algorithm we will run for 5000 experiments, also called epochs: (code block 8)

def probs(v,eps=1e-4): 
    v = v-v.min()+eps 
    v = v/v.sum() 
    return v

python

for epoch in range(5000): 
 
    # Pick initial point 
    m.random_start() 
     
    # Start travelling 
    n=0 
    cum_reward = 0 
    while True: 
        x,y = m.human 
        v = probs(Q[x,y]) 
        a = random.choices(list(actions),weights=v)[0] 
        dpos = actions[a] 
        m.move(dpos) 
        r = reward(m) 
        cum_reward += r 
        if r==end_reward or cum_reward < -1000: 
            lpath.append(n) 

python



After executing this algorithm, Q-Table should be updated with values that define the attractiveness

of different actions at each step. We can try to visualize Q-Table by plotting a vector at each cell that

will point in the desired direction of movement. For simplicity, we draw a small circle instead of an

arrow head.

Checking the Policy

Since Q-Table lists the "attractiveness" of each action at each state, it is quite easy to use it to define

the efficient navigation in our world. In the simplest case, we can select the action corresponding to

the highest Q-Table value: (code block 9)

If you try the code above several times, you may notice that sometimes it "hangs", and you

need to press the STOP button in the notebook to interrupt it. This happens because there

could be situations when two states "point" to each other in terms of optimal Q-Value, in

which case the agents ends up moving between those states indefinitely.

🚀Challenge

            break 
        alpha = np.exp(-n / 10e5) 
        gamma = 0.5 
        ai = action_idx[a] 
        Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos
        n+=1

def qpolicy_strict(m): 
        x,y = m.human 
        v = probs(Q[x,y]) 
        a = list(actions)[np.argmax(v)] 
        return a 
 
walk(m,qpolicy_strict)

python



Task 1: Modify the walk  function to limit the maximum length of path by a certain number

of steps (say, 100), and watch the code above return this value from time to time.

Task 2: Modify the walk  function so that it does not go back to the places where is has

already been previously. This will prevent walk  from looping, however, the agent can still

end up being "trapped" in a location from which it is unable to escape.

Navigation

Better navigation policy would be the one that we have used during training, which combines

exploitation and exploration. In this policy, we will select each action with a certain probability,

proportional to the values in Q-Table. This strategy may still result in the agent returning back to the

position it has already explored, but, as you can see from the code below, it results in very short

average path to the desired location (remember that print_statistics  runs the simulation 100

times): (code block 10)

After running this code, you should get a much smaller average path length than before, in the range

of 3-6.

Investigating the learning process

As we have mentioned, the learning process is a balance between exploration and exploration of

gained knowledge about the structure of problem space. We have seen that the result of learning

(the ability to help an agent to find a short path to the goal) has improved, but it is also interesting to

observe how the average path length behaves during the learning process:

def qpolicy(m): 
        x,y = m.human 
        v = probs(Q[x,y]) 
        a = random.choices(list(actions),weights=v)[0] 
        return a 
 
print_statistics(qpolicy)

python



What we see here is that at first the average path length increases. This is probably due to the fact

that when we know nothing about the environment we are likely to get trapped into bad states, water

or wolf. As we learn more and start using this knowledge, we can explore the environment for longer,

but we still do not know where the apples are very well.

Once we learn enough, it becomes easier for the agent to achieve the goal, and the path length starts

to decrease. However, we are still open to exploration, so we often diverge away from the best path,

and explore new options, making the path longer than optimal.

What we also observe on this graph, is that at some point the length increased abruptly. This

indicates stochastic nature of the process, and that we can at some point "spoil" the Q-Table

coefficients by overwriting them with new values. This ideally should be minimized by decreasing

learning rate (i.e. towards the end of training we only adjust Q-Table values by a small value).

Overall, it is important to remember that the success and quality of the learning process significantly

depends on parameters, such as leaning rate, learning rate decay and discount factor. Those are

often called hyperparameters, to distinguish them from parameters which we optimize during

training (eg. Q-Table coefficients). The process of finding best hyperparameter values is called

hyperparameter optimization, and it deserves a separate topic.

Post-lecture quiz

AssignmentA More Realistic World

Machine learning in the real world
In this curriculum, you have learned many ways to prepare data for training and create machine

learning models. You built a series of classic regression, clustering, classification, natural language

processing, and time series models. Congratulations! Now, you might be wondering what it's all for...

what are the real world applications for these models?

While a lot of interest in industry has been garnered by AI, which usually leverages deep learning,

there are still valuable applications for classical machine learning models. You might even use some

of these applications today! In this lesson, you'll explore how eight different industries and subject-

matter domains use these types of models to make their applications more performant, reliable,

intelligent, and valuable to users.

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/44/


Pre-lecture quiz

💰 Finance

Credit card fraud detection

We learned about k-means clustering earlier in the course, but how can it be used to solve problems

related to credit card fraud?

K-means clustering comes in handy during a credit card fraud detection technique called outlier

detection. Outliers, or deviations in observations about a set of data, can tell us if a credit card is

being used in a normal capacity or if something unusual is going on. As shown in the paper linked

below, you can sort credit card data using a k-means clustering algorithm and assign each

transaction to a cluster based on how much of an outlier it appears to be. Then, you can evaluate the

riskiest clusters for fraudulent versus legitimate transactions.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf

Wealth management

In wealth management, an individual or firm handles investments on behalf of their clients. Their job is

to sustain and grow wealth in the long-term, so it is essential to choose investments that perform

well.

One way to evaluate how a particular investment performs is through statistical regression. Linear

regression is a valuable tool for understanding how a fund performs relative to some benchmark. We

can also deduce whether or not the results of the regression are statistically significant, or how much

they would affect a client's investments. You could even further expand your analysis using multiple

regression, where additional risk factors can be taken into account. For an example of how this would

work for a specific fund, check out the paper below on evaluating fund performance using regression.

http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/

🎓 Education

Predicting student behavior

https://jolly-sea-0a877260f.azurestaticapps.net/quiz/47/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf
http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/


Coursera, an online open course provider, has a great tech blog where they discuss many

engineering decisions. In this case study, they plotted a regression line to try to explore any

correlation between a low NPS (Net Promoter Score) rating and course retention or drop-off.

https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-

quality-on-learner-retention-31f956bd592a

Mitigating bias

Grammarly, a writing assistant that checks for spelling and grammar errors, uses sophisticated

natural language processing systems throughout its products. They published an interesting case

study in their tech blog about how they dealt with gender bias in machine learning, which you learned

about in our introductory fairness lesson.

https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/

👜 Retail

Personalizing the customer journey

At Wayfair, a company that sells home goods like furniture, helping customers find the right products

for their taste and needs is paramount. In this article, engineers from the company describe how they

use ML and NLP to "surface the right results for customers". Notably, their Query Intent Engine has

been built to use entity extraction, classifier training, asset and opinion extraction, and sentiment

tagging on customer reviews. This is a classic use case of how NLP works in online retail.

https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-

language-processing-to-empower-search

Inventory management

Innovative, nimble companies like StitchFix, a box service that ships clothing to consumers, rely

heavily on ML for recommendations and inventory management. Their styling teams work together

with their merchandising teams, in fact: "one of our data scientists tinkered with a genetic algorithm

and applied it to apparel to predict what would be a successful piece of clothing that doesn't exist

today. We brought that to the merchandise team and now they can use that as a tool."

https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-

styling/

https://coursera.com/
https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a
https://grammarly.com/
https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/
https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search
https://stitchfix.com/
https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/


🏥 Health Care

Managing clinical trials

Toxicity in clinical trials is a major concern to drug makers. How much toxicity is tolerable? In this

study, analyzing various clinical trial methods led to the development of a new approach for

predicting the odds of clinical trial outcomes. Specifically, they were able to use random forest to

produce a classifier that is able to distinguish between groups of drugs.

https://www.sciencedirect.com/science/article/pii/S2451945616302914

Hospital readmission management

Hospital care is costly, especially when patients have to be readmitted. This paper discusses a

company that uses ML to predict readmission potential using clustering algorithms. These clusters

help analysts to "discover groups of readmissions that may share a common cause".

https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-

machine-learning

Disease management

The recent pandemic has shone a bright light on the ways that machine learning can aid in stopping

the spread of disease. In this article, you'll recognize the use of ARIMA, logistic curves, linear

regression, and SARIMA. "This work is an attempt to calculate the rate of spread of this virus and

thus to predict the deaths, recoveries, and confirmed cases, so that it may help us to prepare better

and survive."

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/

🌲 Ecology and Green Tech

Forest management

You learned about Reinforcement Learning in previous lessons. It can be very useful when trying to

predict patterns in nature. In particular, it can be used to track ecological problems like forest fires

and the spread of invasive species. In Canada, a group of researchers used Reinforcement Learning

to build forest wildfire dynamics models from satellite images. Using an innovative "spatially

spreading process (SSP)", they envisioned a forest fire as "the agent at any cell in the landscape."

https://www.sciencedirect.com/science/article/pii/S2451945616302914
https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/


"The set of actions the fire can take from a location at any point in time includes spreading north,

south, east, or west or not spreading.

This approach inverts the usual RL setup since the dynamics of the corresponding Markov Decision

Process (MDP) is a known function for immediate wildfire spread." Read more about the classic

algorithms used by this group at the link below.

https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full

Motion sensing of animals

While deep learning has created a revolution in visually-tracking animal movements (you can build

your own polar bear tracker here), classic ML still has a place in this task.

Sensors to track movements of farm animals and IoT makes use of this type of visual processing, but

more basic ML techniques are useful to preprocess data. For example, in this paper, sheep postures

were monitored and analyzed using various classifier algorithms. You might recognize the ROC curve

on page 335.

https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf

⚡  Energy Management

In our lessons on time series forecasting, we invoked the concept of smart parking meters to

generate revenue for a town based on understanding supply and demand. This article discusses in

detail how clustering, regression and time series forecasting combined to help predict future energy

use in Ireland, based off of smart metering.

https://www-cdn.knime.com/sites/default/files/inline-

images/knime_bigdata_energy_timeseries_whitepaper.pdf

💼 Insurance

Volatility Management

MetLife, a life insurance provider, is forthcoming with the way they analyze and mitigate volatility in

their financial models. In this article you'll notice binary and ordinal classification visualizations. You'll

also discover forecasting visualizations.

https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-

topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf

https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full
https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-15963-cxa
https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf
https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf
https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf


🎨 Arts, Culture, and Literature

Fake news detection

Detecting fake news has become a game of cat and mouse in today's media. In this article,

researchers suggest that a system combining several of the ML techniques we have studied can be

tested and the best model deployed: "This system is based on natural language processing to extract

features from the data and then these features are used for the training of machine learning

classifiers such as Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic

Gradient Descent (SGD), and Logistic Regression(LR)."

https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf

This article shows how combining different ML domains can produce interesting results that can help

stop fake news from spreading and creating real damage; in this case, the impetus was the spread of

rumors about COVID treatments that incited mob violence.

Museum ML

Museums are at the cusp of an AI revolution in which cataloging and digitizing collections and finding

links between artifacts is becoming easier as technology advances. Projects such as In Codice Ratio

are helping unlock the mysteries of inaccessible collections such as the Vatican Archives. But, the

business aspect of museums benefits from ML models as well.

For example, the Art Institute of Chicago built models to predict what audiences are interested in and

when they will attend expositions. The goals is to create individualized and optimized visitor

experiences each time the user visit the museum. "During fiscal 2017, the model predicted

attendance and admissions within 1 percent of accuracy, says Andrew Simnick, senior vice president

at the Art Institute."

https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-

uses-data-to-make-exhibit-choices

🏷 Marketing

Customer segmentation

The most effective marketing strategies target customers in different ways based on various

groupings. In this article, the uses of Clustering algorithms are discussed to support differentiated

https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.
https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices


marketing. Differentiated marketing helps companies improve brand recognition, reach more

customers, and make more money.

https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/

🚀 Challenge

Identify another sector that benefits from some of the techniques you learned in this curriculum, and

discover how it uses ML.

Post-lecture quiz

Review & Self Study

The Wayfair data science team has several interesting videos on how they use ML at their company.

It's worth taking a look!

Assignment

A ML scavenger hunt

https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/
https://jolly-sea-0a877260f.azurestaticapps.net/quiz/48/
https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos

