{ "cells": [ { "source": [ "# Build More Classification Models" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 0 indian 0 0 0 0 0 \n", "1 1 indian 1 0 0 0 0 \n", "2 2 indian 0 0 0 0 0 \n", "3 3 indian 0 0 0 0 0 \n", "4 4 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 382 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" }, "metadata": {}, "execution_count": 57 } ], "source": [ "import pandas as pd\n", "recipes_df = pd.read_csv(\"../../data/cleaned_cuisine.csv\")\n", "recipes_df.head()" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0 indian\n", "1 indian\n", "2 indian\n", "3 indian\n", "4 indian\n", "Name: cuisine, dtype: object" ] }, "metadata": {}, "execution_count": 58 } ], "source": [ "recipes_label_df = recipes_df['cuisine']\n", "recipes_label_df.head()" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " almond angelica anise anise_seed apple apple_brandy apricot \\\n", "0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", "\n", " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 380 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" }, "metadata": {}, "execution_count": 59 } ], "source": [ "recipes_feature_df = recipes_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", "recipes_feature_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Try different classifiers" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import SVC\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(recipes_feature_df, recipes_label_df, test_size=0.3)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "\n", "C = 10\n", "# Create different classifiers.\n", "classifiers = {\n", " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", " 'KNN classifier': KNeighborsClassifier(C),\n", " 'SVC': SVC(),\n", " 'RFST': RandomForestClassifier(n_estimators=100),\n", " 'ADA': AdaBoostClassifier(n_estimators=100)\n", " \n", "}\n" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy (train) for Linear SVC: 79.7% \n", " precision recall f1-score support\n", "\n", " chinese 0.71 0.73 0.72 232\n", " indian 0.91 0.88 0.89 251\n", " japanese 0.76 0.78 0.77 239\n", " korean 0.86 0.75 0.80 244\n", " thai 0.76 0.84 0.80 233\n", "\n", " accuracy 0.80 1199\n", " macro avg 0.80 0.80 0.80 1199\n", "weighted avg 0.80 0.80 0.80 1199\n", "\n", "Accuracy (train) for KNN classifier: 72.9% \n", " precision recall f1-score support\n", "\n", " chinese 0.62 0.68 0.65 232\n", " indian 0.87 0.82 0.85 251\n", " japanese 0.62 0.83 0.71 239\n", " korean 0.92 0.55 0.68 244\n", " thai 0.73 0.76 0.75 233\n", "\n", " accuracy 0.73 1199\n", " macro avg 0.75 0.73 0.73 1199\n", "weighted avg 0.76 0.73 0.73 1199\n", "\n", "Accuracy (train) for SVC: 81.8% \n", " precision recall f1-score support\n", "\n", " chinese 0.78 0.71 0.74 232\n", " indian 0.92 0.90 0.91 251\n", " japanese 0.79 0.80 0.80 239\n", " korean 0.85 0.78 0.82 244\n", " thai 0.75 0.89 0.81 233\n", "\n", " accuracy 0.82 1199\n", " macro avg 0.82 0.82 0.82 1199\n", "weighted avg 0.82 0.82 0.82 1199\n", "\n", "Accuracy (train) for RFST: 83.3% \n", " precision recall f1-score support\n", "\n", " chinese 0.80 0.75 0.77 232\n", " indian 0.91 0.92 0.91 251\n", " japanese 0.81 0.82 0.82 239\n", " korean 0.85 0.81 0.83 244\n", " thai 0.79 0.86 0.82 233\n", "\n", " accuracy 0.83 1199\n", " macro avg 0.83 0.83 0.83 1199\n", "weighted avg 0.83 0.83 0.83 1199\n", "\n", "Accuracy (train) for ADA: 70.8% \n", " precision recall f1-score support\n", "\n", " chinese 0.60 0.45 0.51 232\n", " indian 0.90 0.81 0.85 251\n", " japanese 0.65 0.72 0.68 239\n", " korean 0.72 0.76 0.74 244\n", " thai 0.67 0.79 0.72 233\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.71 0.71 0.70 1199\n", "weighted avg 0.71 0.71 0.70 1199\n", "\n" ] } ], "source": [ "n_classifiers = len(classifiers)\n", "\n", "for index, (name, classifier) in enumerate(classifiers.items()):\n", " classifier.fit(X_train, np.ravel(y_train))\n", "\n", " y_pred = classifier.predict(X_test)\n", " accuracy = accuracy_score(y_test, y_pred)\n", " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", " print(classification_report(y_test,y_pred))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" }, "kernelspec": { "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", "display_name": "Python 3.7.3 64-bit", "language": "python" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } } }, "nbformat": 4, "nbformat_minor": 4 }