{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Build a cuisine recommender" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "[notice] A new release of pip is available: 25.0.1 -> 25.2\n", "[notice] To update, run: python.exe -m pip install --upgrade pip\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: skl2onnx in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (1.19.1)\n", "Requirement already satisfied: onnx>=1.2.1 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from skl2onnx) (1.19.0)\n", "Requirement already satisfied: scikit-learn>=1.1 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from skl2onnx) (1.6.1)\n", "Requirement already satisfied: numpy>=1.22 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from onnx>=1.2.1->skl2onnx) (2.2.6)\n", "Requirement already satisfied: protobuf>=4.25.1 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from onnx>=1.2.1->skl2onnx) (6.32.1)\n", "Requirement already satisfied: typing_extensions>=4.7.1 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from onnx>=1.2.1->skl2onnx) (4.14.0)\n", "Requirement already satisfied: ml_dtypes in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from onnx>=1.2.1->skl2onnx) (0.5.3)\n", "Requirement already satisfied: scipy>=1.6.0 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from scikit-learn>=1.1->skl2onnx) (1.15.3)\n", "Requirement already satisfied: joblib>=1.2.0 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from scikit-learn>=1.1->skl2onnx) (1.5.1)\n", "Requirement already satisfied: threadpoolctl>=3.1.0 in d:\\ai\\machinelearning\\ml-for-beginners\\.venv\\lib\\site-packages (from scikit-learn>=1.1->skl2onnx) (3.6.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "%pip install skl2onnx\n", "import pandas as pd " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | Unnamed: 0 | \n", "cuisine | \n", "almond | \n", "angelica | \n", "anise | \n", "anise_seed | \n", "apple | \n", "apple_brandy | \n", "apricot | \n", "armagnac | \n", "... | \n", "whiskey | \n", "white_bread | \n", "white_wine | \n", "whole_grain_wheat_flour | \n", "wine | \n", "wood | \n", "yam | \n", "yeast | \n", "yogurt | \n", "zucchini | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "0 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 1 | \n", "1 | \n", "indian | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 2 | \n", "2 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 3 | \n", "3 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 4 | \n", "4 | \n", "indian | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "
5 rows × 382 columns
\n", "| \n", " | almond | \n", "angelica | \n", "anise | \n", "anise_seed | \n", "apple | \n", "apple_brandy | \n", "apricot | \n", "armagnac | \n", "artemisia | \n", "artichoke | \n", "... | \n", "whiskey | \n", "white_bread | \n", "white_wine | \n", "whole_grain_wheat_flour | \n", "wine | \n", "wood | \n", "yam | \n", "yeast | \n", "yogurt | \n", "zucchini | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 1 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 2 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 3 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "
| 4 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "
5 rows × 380 columns
\n", "| \n", " | cuisine | \n", "
|---|---|
| 0 | \n", "indian | \n", "
| 1 | \n", "indian | \n", "
| 2 | \n", "indian | \n", "
| 3 | \n", "indian | \n", "
| 4 | \n", "indian | \n", "
SVC(C=10, kernel='linear', probability=True, random_state=0)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
SVC(C=10, kernel='linear', probability=True, random_state=0)