{
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.0"
  },
  "orig_nbformat": 2,
  "kernelspec": {
   "name": "python3",
   "display_name": "Python 3.7.0 64-bit ('3.7')"
  },
  "metadata": {
   "interpreter": {
    "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
   }
  },
  "interpreter": {
   "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2,
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n",
      "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n",
      "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n",
      "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n",
      "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n",
      "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n",
      "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n",
      "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n",
      "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n",
      "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n",
      "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n",
      "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n",
      "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
      "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install skl2onnx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Requirement already satisfied: onnxruntime in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n",
      "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnxruntime) (3.8.0)\n",
      "Requirement already satisfied: flatbuffers in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnxruntime) (2.0)\n",
      "Requirement already satisfied: numpy>=1.16.6 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnxruntime) (1.19.2)\n",
      "Requirement already satisfied: six>=1.9 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from protobuf->onnxruntime) (1.12.0)\n",
      "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->onnxruntime) (45.1.0)\n",
      "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n",
      "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install onnxruntime"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np \n",
    "import pandas as pd \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "   Unnamed: 0 cuisine  almond  angelica  anise  anise_seed  apple  \\\n",
       "0           0  indian       0         0      0           0      0   \n",
       "1           1  indian       1         0      0           0      0   \n",
       "2           2  indian       0         0      0           0      0   \n",
       "3           3  indian       0         0      0           0      0   \n",
       "4           4  indian       0         0      0           0      0   \n",
       "\n",
       "   apple_brandy  apricot  armagnac  ...  whiskey  white_bread  white_wine  \\\n",
       "0             0        0         0  ...        0            0           0   \n",
       "1             0        0         0  ...        0            0           0   \n",
       "2             0        0         0  ...        0            0           0   \n",
       "3             0        0         0  ...        0            0           0   \n",
       "4             0        0         0  ...        0            0           0   \n",
       "\n",
       "   whole_grain_wheat_flour  wine  wood  yam  yeast  yogurt  zucchini  \n",
       "0                        0     0     0    0      0       0         0  \n",
       "1                        0     0     0    0      0       0         0  \n",
       "2                        0     0     0    0      0       0         0  \n",
       "3                        0     0     0    0      0       0         0  \n",
       "4                        0     0     0    0      0       1         0  \n",
       "\n",
       "[5 rows x 382 columns]"
      ],
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Unnamed: 0</th>\n      <th>cuisine</th>\n      <th>almond</th>\n      <th>angelica</th>\n      <th>anise</th>\n      <th>anise_seed</th>\n      <th>apple</th>\n      <th>apple_brandy</th>\n      <th>apricot</th>\n      <th>armagnac</th>\n      <th>...</th>\n      <th>whiskey</th>\n      <th>white_bread</th>\n      <th>white_wine</th>\n      <th>whole_grain_wheat_flour</th>\n      <th>wine</th>\n      <th>wood</th>\n      <th>yam</th>\n      <th>yeast</th>\n      <th>yogurt</th>\n      <th>zucchini</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>indian</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>indian</td>\n      <td>1</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>2</td>\n      <td>indian</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>3</td>\n      <td>indian</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>4</td>\n      <td>indian</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>1</td>\n      <td>0</td>\n    </tr>\n  </tbody>\n</table>\n<p>5 rows × 382 columns</p>\n</div>"
     },
     "metadata": {},
     "execution_count": 4
    }
   ],
   "source": [
    "data = pd.read_csv('../../data/cleaned_cuisine.csv')\n",
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "   almond  angelica  anise  anise_seed  apple  apple_brandy  apricot  \\\n",
       "0       0         0      0           0      0             0        0   \n",
       "1       1         0      0           0      0             0        0   \n",
       "2       0         0      0           0      0             0        0   \n",
       "3       0         0      0           0      0             0        0   \n",
       "4       0         0      0           0      0             0        0   \n",
       "\n",
       "   armagnac  artemisia  artichoke  ...  whiskey  white_bread  white_wine  \\\n",
       "0         0          0          0  ...        0            0           0   \n",
       "1         0          0          0  ...        0            0           0   \n",
       "2         0          0          0  ...        0            0           0   \n",
       "3         0          0          0  ...        0            0           0   \n",
       "4         0          0          0  ...        0            0           0   \n",
       "\n",
       "   whole_grain_wheat_flour  wine  wood  yam  yeast  yogurt  zucchini  \n",
       "0                        0     0     0    0      0       0         0  \n",
       "1                        0     0     0    0      0       0         0  \n",
       "2                        0     0     0    0      0       0         0  \n",
       "3                        0     0     0    0      0       0         0  \n",
       "4                        0     0     0    0      0       1         0  \n",
       "\n",
       "[5 rows x 380 columns]"
      ],
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>almond</th>\n      <th>angelica</th>\n      <th>anise</th>\n      <th>anise_seed</th>\n      <th>apple</th>\n      <th>apple_brandy</th>\n      <th>apricot</th>\n      <th>armagnac</th>\n      <th>artemisia</th>\n      <th>artichoke</th>\n      <th>...</th>\n      <th>whiskey</th>\n      <th>white_bread</th>\n      <th>white_wine</th>\n      <th>whole_grain_wheat_flour</th>\n      <th>wine</th>\n      <th>wood</th>\n      <th>yam</th>\n      <th>yeast</th>\n      <th>yogurt</th>\n      <th>zucchini</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>1</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>...</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>1</td>\n      <td>0</td>\n    </tr>\n  </tbody>\n</table>\n<p>5 rows × 380 columns</p>\n</div>"
     },
     "metadata": {},
     "execution_count": 5
    }
   ],
   "source": [
    "X = data.iloc[:,2:]\n",
    "X.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "  cuisine\n",
       "0  indian\n",
       "1  indian\n",
       "2  indian\n",
       "3  indian\n",
       "4  indian"
      ],
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>cuisine</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>indian</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>indian</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>indian</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>indian</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>indian</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
     },
     "metadata": {},
     "execution_count": 6
    }
   ],
   "source": [
    "y = data[['cuisine']]\n",
    "y.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.svm import SVC\n",
    "from sklearn.model_selection import cross_val_score\n",
    "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "SVC(C=10, kernel='linear', probability=True, random_state=0)"
      ]
     },
     "metadata": {},
     "execution_count": 9
    }
   ],
   "source": [
    "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n",
    "model.fit(X_train,y_train.values.ravel())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred = model.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "              precision    recall  f1-score   support\n\n     chinese       0.68      0.69      0.68       249\n      indian       0.92      0.88      0.90       238\n    japanese       0.77      0.68      0.72       236\n      korean       0.84      0.79      0.82       247\n        thai       0.73      0.88      0.80       229\n\n    accuracy                           0.78      1199\n   macro avg       0.79      0.79      0.78      1199\nweighted avg       0.79      0.78      0.78      1199\n\n"
     ]
    }
   ],
   "source": [
    "print(classification_report(y_test,y_pred))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "from skl2onnx import convert_sklearn\n",
    "from skl2onnx.common.data_types import FloatTensorType\n",
    "\n",
    "initial_type = [('float_input', FloatTensorType([None, 4]))]\n",
    "options = {id(model): {'nocl': True, 'zipmap': False}}\n",
    "onx = convert_sklearn(model, initial_types=initial_type,options=options)\n",
    "with open(\"./model.onnx\", \"wb\") as f:\n",
    "    f.write(onx.SerializeToString())\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ]
}