{ "cells": [ { "source": [ "# Build More Classification Models" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 0 indian 0 0 0 0 0 \n", "1 1 indian 1 0 0 0 0 \n", "2 2 indian 0 0 0 0 0 \n", "3 3 indian 0 0 0 0 0 \n", "4 4 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 382 columns]" ], "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>cuisine</th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>indian</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>3</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>4</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 382 columns</p>\n</div>" }, "metadata": {}, "execution_count": 1 } ], "source": [ "import pandas as pd\n", "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisine.csv\")\n", "cuisines_df.head()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0 indian\n", "1 indian\n", "2 indian\n", "3 indian\n", "4 indian\n", "Name: cuisine, dtype: object" ] }, "metadata": {}, "execution_count": 2 } ], "source": [ "cuisines_label_df = cuisines_df['cuisine']\n", "cuisines_label_df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " almond angelica anise anise_seed apple apple_brandy apricot \\\n", "0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", "\n", " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 380 columns]" ], "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>artemisia</th>\n <th>artichoke</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 380 columns</p>\n</div>" }, "metadata": {}, "execution_count": 3 } ], "source": [ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", "cuisines_feature_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Try different classifiers" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import SVC\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "\n", "C = 10\n", "# Create different classifiers.\n", "classifiers = {\n", " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", " 'KNN classifier': KNeighborsClassifier(C),\n", " 'SVC': SVC(),\n", " 'RFST': RandomForestClassifier(n_estimators=100),\n", " 'ADA': AdaBoostClassifier(n_estimators=100)\n", " \n", "}\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy (train) for Linear SVC: 76.4% \n", " precision recall f1-score support\n", "\n", " chinese 0.64 0.66 0.65 242\n", " indian 0.91 0.86 0.89 236\n", " japanese 0.72 0.73 0.73 245\n", " korean 0.83 0.75 0.79 234\n", " thai 0.75 0.82 0.78 242\n", "\n", " accuracy 0.76 1199\n", " macro avg 0.77 0.76 0.77 1199\n", "weighted avg 0.77 0.76 0.77 1199\n", "\n", "Accuracy (train) for KNN classifier: 70.7% \n", " precision recall f1-score support\n", "\n", " chinese 0.65 0.63 0.64 242\n", " indian 0.84 0.81 0.82 236\n", " japanese 0.60 0.81 0.69 245\n", " korean 0.89 0.53 0.67 234\n", " thai 0.69 0.75 0.72 242\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.73 0.71 0.71 1199\n", "weighted avg 0.73 0.71 0.71 1199\n", "\n", "Accuracy (train) for SVC: 80.1% \n", " precision recall f1-score support\n", "\n", " chinese 0.71 0.69 0.70 242\n", " indian 0.92 0.92 0.92 236\n", " japanese 0.77 0.78 0.77 245\n", " korean 0.87 0.77 0.82 234\n", " thai 0.75 0.86 0.80 242\n", "\n", " accuracy 0.80 1199\n", " macro avg 0.80 0.80 0.80 1199\n", "weighted avg 0.80 0.80 0.80 1199\n", "\n", "Accuracy (train) for RFST: 82.8% \n", " precision recall f1-score support\n", "\n", " chinese 0.80 0.75 0.77 242\n", " indian 0.90 0.91 0.90 236\n", " japanese 0.82 0.78 0.80 245\n", " korean 0.85 0.82 0.83 234\n", " thai 0.78 0.89 0.83 242\n", "\n", " accuracy 0.83 1199\n", " macro avg 0.83 0.83 0.83 1199\n", "weighted avg 0.83 0.83 0.83 1199\n", "\n", "Accuracy (train) for ADA: 71.1% \n", " precision recall f1-score support\n", "\n", " chinese 0.60 0.57 0.58 242\n", " indian 0.87 0.84 0.86 236\n", " japanese 0.71 0.60 0.65 245\n", " korean 0.68 0.78 0.72 234\n", " thai 0.70 0.78 0.74 242\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.71 0.71 0.71 1199\n", "weighted avg 0.71 0.71 0.71 1199\n", "\n" ] } ], "source": [ "n_classifiers = len(classifiers)\n", "\n", "for index, (name, classifier) in enumerate(classifiers.items()):\n", " classifier.fit(X_train, np.ravel(y_train))\n", "\n", " y_pred = classifier.predict(X_test)\n", " accuracy = accuracy_score(y_test, y_pred)\n", " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", " print(classification_report(y_test,y_pred))" ] } ], "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" }, "kernelspec": { "name": "python3", "display_name": "Python 3.7.0 64-bit ('3.7')" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } } }, "nbformat": 4, "nbformat_minor": 4 }