{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Welcome to the world of Machine learning\n", "###### create the .venv environment form https://scikit-learn.org/stable/install.html\n", "###### use the .venv environment for the execution of the ipykernel\n", "###### first install scikit-learn, matplotlib, numpy, pandas, ipykernel in virtual environment" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape: (2, 3, 4)\n", "3D Array: \n", " [[[ 1 2 3 4]\n", " [ 5 6 7 8]\n", " [ 9 10 11 12]]\n", "\n", " [[13 14 15 16]\n", " [17 18 19 20]\n", " [21 22 23 24]]]\n" ] } ], "source": [ "import numpy as np\n", "a = np.array([\n", " [\n", " [1, 2, 3, 4],\n", " [5, 6, 7, 8],\n", " [9, 10, 11, 12]\n", " ],\n", " [\n", " [13, 14, 15, 16],\n", " [17, 18, 19, 20],\n", " [21, 22, 23, 24]\n", " ] \n", "])\n", "print(\"Shape:\", a.shape)\n", "print(\"3D Array: \\n\", a)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.3" } }, "nbformat": 4, "nbformat_minor": 2 }