{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "c50398ed", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 1, "id": "aaf49431", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[9 0 8]\n" ] } ], "source": [ "import numpy as np \n", "a = np.array([[9,0,8],[7,5,4],[4,5,3],[1,2,3],[2,3,4]])\n", "print(a[0])\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "106b79cb", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "ed3a7910", "metadata": {}, "source": [ "# Welcome to your notebook" ] }, { "cell_type": "code", "execution_count": 3, "id": "1f632132", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hello world, I am learning ML\n" ] } ], "source": [ "print(\"Hello world, I am learning ML\")" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }