{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [ "# 使用支持向量回归器进行时间序列预测\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "在本笔记中,我们将演示如何:\n", "\n", "- 准备二维时间序列数据以训练SVM回归模型\n", "- 使用RBF核实现SVR\n", "- 通过图表和MAPE评估模型\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 导入模块\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## 准备数据\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "### 加载数据\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", " | load | \n", "
---|---|
2012-01-01 00:00:00 | \n", "2698.0 | \n", "
2012-01-01 01:00:00 | \n", "2558.0 | \n", "
2012-01-01 02:00:00 | \n", "2444.0 | \n", "
2012-01-01 03:00:00 | \n", "2402.0 | \n", "
2012-01-01 04:00:00 | \n", "2403.0 | \n", "