{ "cells": [ { "source": [], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 0 indian 0 0 0 0 0 \n", "1 1 indian 1 0 0 0 0 \n", "2 2 indian 0 0 0 0 0 \n", "3 3 indian 0 0 0 0 0 \n", "4 4 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 382 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" }, "metadata": {}, "execution_count": 1 } ], "source": [ "import pandas as pd\n", "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", "cuisines_df.head()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0 indian\n", "1 indian\n", "2 indian\n", "3 indian\n", "4 indian\n", "Name: cuisine, dtype: object" ] }, "metadata": {}, "execution_count": 2 } ], "source": [ "cuisines_label_df = cuisines_df['cuisine']\n", "cuisines_label_df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " almond angelica anise anise_seed apple apple_brandy apricot \\\n", "0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", "\n", " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 380 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" }, "metadata": {}, "execution_count": 3 } ], "source": [ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", "cuisines_feature_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Спробуйте різні класифікатори\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import SVC\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "\n", "C = 10\n", "# Create different classifiers.\n", "classifiers = {\n", " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", " 'KNN classifier': KNeighborsClassifier(C),\n", " 'SVC': SVC(),\n", " 'RFST': RandomForestClassifier(n_estimators=100),\n", " 'ADA': AdaBoostClassifier(n_estimators=100)\n", " \n", "}\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy (train) for Linear SVC: 76.4% \n", " precision recall f1-score support\n", "\n", " chinese 0.64 0.66 0.65 242\n", " indian 0.91 0.86 0.89 236\n", " japanese 0.72 0.73 0.73 245\n", " korean 0.83 0.75 0.79 234\n", " thai 0.75 0.82 0.78 242\n", "\n", " accuracy 0.76 1199\n", " macro avg 0.77 0.76 0.77 1199\n", "weighted avg 0.77 0.76 0.77 1199\n", "\n", "Accuracy (train) for KNN classifier: 70.7% \n", " precision recall f1-score support\n", "\n", " chinese 0.65 0.63 0.64 242\n", " indian 0.84 0.81 0.82 236\n", " japanese 0.60 0.81 0.69 245\n", " korean 0.89 0.53 0.67 234\n", " thai 0.69 0.75 0.72 242\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.73 0.71 0.71 1199\n", "weighted avg 0.73 0.71 0.71 1199\n", "\n", "Accuracy (train) for SVC: 80.1% \n", " precision recall f1-score support\n", "\n", " chinese 0.71 0.69 0.70 242\n", " indian 0.92 0.92 0.92 236\n", " japanese 0.77 0.78 0.77 245\n", " korean 0.87 0.77 0.82 234\n", " thai 0.75 0.86 0.80 242\n", "\n", " accuracy 0.80 1199\n", " macro avg 0.80 0.80 0.80 1199\n", "weighted avg 0.80 0.80 0.80 1199\n", "\n", "Accuracy (train) for RFST: 82.8% \n", " precision recall f1-score support\n", "\n", " chinese 0.80 0.75 0.77 242\n", " indian 0.90 0.91 0.90 236\n", " japanese 0.82 0.78 0.80 245\n", " korean 0.85 0.82 0.83 234\n", " thai 0.78 0.89 0.83 242\n", "\n", " accuracy 0.83 1199\n", " macro avg 0.83 0.83 0.83 1199\n", "weighted avg 0.83 0.83 0.83 1199\n", "\n", "Accuracy (train) for ADA: 71.1% \n", " precision recall f1-score support\n", "\n", " chinese 0.60 0.57 0.58 242\n", " indian 0.87 0.84 0.86 236\n", " japanese 0.71 0.60 0.65 245\n", " korean 0.68 0.78 0.72 234\n", " thai 0.70 0.78 0.74 242\n", "\n", " accuracy 0.71 1199\n", " macro avg 0.71 0.71 0.71 1199\n", "weighted avg 0.71 0.71 0.71 1199\n", "\n" ] } ], "source": [ "n_classifiers = len(classifiers)\n", "\n", "for index, (name, classifier) in enumerate(classifiers.items()):\n", " classifier.fit(X_train, np.ravel(y_train))\n", "\n", " y_pred = classifier.predict(X_test)\n", " accuracy = accuracy_score(y_test, y_pred)\n", " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", " print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Відмова від відповідальності**: \nЦей документ було перекладено за допомогою сервісу автоматичного перекладу [Co-op Translator](https://github.com/Azure/co-op-translator). Хоча ми прагнемо до точності, зверніть увагу, що автоматичні переклади можуть містити помилки або неточності. Оригінальний документ мовою оригіналу слід вважати авторитетним джерелом. Для критично важливої інформації рекомендується професійний людський переклад. Ми не несемо відповідальності за будь-які непорозуміння або неправильні тлумачення, що виникли внаслідок використання цього перекладу.\n" ] } ], "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" }, "kernelspec": { "name": "python3", "display_name": "Python 3.7.0 64-bit ('3.7')" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } }, "coopTranslator": { "original_hash": "7ea2b714669c823a596d986ba2d5739f", "translation_date": "2025-09-04T08:33:09+00:00", "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", "language_code": "uk" } }, "nbformat": 4, "nbformat_minor": 4 }