{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": 3 }, "orig_nbformat": 4, "coopTranslator": { "original_hash": "27de2abc0235ebd22080fc8f1107454d", "translation_date": "2025-09-06T15:22:21+00:00", "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", "language_code": "tr" } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from textblob import TextBlob\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# You should download the book text, clean it, and import it here\n", "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", " file_contents = f.read()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "book_pride = TextBlob(file_contents)\n", "positive_sentiment_sentences = []\n", "negative_sentiment_sentences = []" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for sentence in book_pride.sentences:\n", " if sentence.sentiment.polarity == 1:\n", " positive_sentiment_sentences.append(sentence)\n", " if sentence.sentiment.polarity == -1:\n", " negative_sentiment_sentences.append(sentence)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", "for sentence in positive_sentiment_sentences:\n", " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", "for sentence in negative_sentiment_sentences:\n", " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Feragatname**: \nBu belge, AI çeviri hizmeti [Co-op Translator](https://github.com/Azure/co-op-translator) kullanılarak çevrilmiştir. Doğruluk için çaba göstersek de, otomatik çevirilerin hata veya yanlışlıklar içerebileceğini lütfen unutmayın. Belgenin orijinal dilindeki hali, yetkili kaynak olarak kabul edilmelidir. Kritik bilgiler için profesyonel insan çevirisi önerilir. Bu çevirinin kullanımından kaynaklanan yanlış anlamalar veya yanlış yorumlamalardan sorumlu değiliz.\n" ] } ] }