{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "anaconda-cloud": "", "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.1" }, "colab": { "name": "lesson_14.ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "coopTranslator": { "original_hash": "ad65fb4aad0a156b42216e4929f490fc", "translation_date": "2025-09-06T14:28:43+00:00", "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", "language_code": "sw" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "GULATlQXLXyR" }, "source": [ "## Chunguza K-Means clustering kwa kutumia R na kanuni za data safi.\n", "\n", "### [**Jaribio la kabla ya somo**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", "\n", "Katika somo hili, utajifunza jinsi ya kuunda makundi kwa kutumia kifurushi cha Tidymodels na vifurushi vingine katika mfumo wa R (tutaviita marafiki 🧑🤝🧑), pamoja na seti ya data ya muziki wa Nigeria uliyoingiza awali. Tutashughulikia misingi ya K-Means kwa Clustering. Kumbuka kwamba, kama ulivyojifunza katika somo la awali, kuna njia nyingi za kufanya kazi na makundi, na mbinu unayotumia inategemea data yako. Tutajaribu K-Means kwa kuwa ni mbinu ya kawaida zaidi ya clustering. Twende kazi!\n", "\n", "Maneno utakayojifunza:\n", "\n", "- Alama ya Silhouette\n", "\n", "- Njia ya Elbow\n", "\n", "- Inertia\n", "\n", "- Variance\n", "\n", "### **Utangulizi**\n", "\n", "[K-Means Clustering](https://wikipedia.org/wiki/K-means_clustering) ni mbinu inayotokana na uwanja wa usindikaji wa ishara. Inatumika kugawanya na kupanga vikundi vya data katika `k clusters` kulingana na kufanana kwa sifa zao.\n", "\n", "Makundi yanaweza kuonyeshwa kama [Voronoi diagrams](https://wikipedia.org/wiki/Voronoi_diagram), ambayo yanajumuisha nukta (au 'mbegu') na eneo lake linalohusiana.\n", "\n", "
\n",
" \n",
"
\n",
" \n",
"
\n",
" \n",
"
\n",
" \n",
"