{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "lesson_12-R.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "ir", "display_name": "R" }, "language_info": { "name": "R" }, "coopTranslator": { "original_hash": "fab50046ca413a38939d579f8432274f", "translation_date": "2025-09-06T14:47:49+00:00", "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", "language_code": "sw" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "jsFutf_ygqSx" }, "source": [] }, { "cell_type": "markdown", "metadata": { "id": "HD54bEefgtNO" }, "source": [ "## Wainishaji wa vyakula 2\n", "\n", "Katika somo hili la pili la uainishaji, tutachunguza `njia zaidi` za kuainisha data ya kategoria. Pia tutajifunza kuhusu athari za kuchagua mainishaji mmoja badala ya mwingine.\n", "\n", "### [**Jaribio la awali la somo**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", "\n", "### **Mahitaji ya awali**\n", "\n", "Tunadhani kuwa umekamilisha masomo ya awali kwa kuwa tutatumia baadhi ya dhana tulizojifunza hapo kabla.\n", "\n", "Kwa somo hili, tutahitaji vifurushi vifuatavyo:\n", "\n", "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) ni [mkusanyiko wa vifurushi vya R](https://www.tidyverse.org/packages) vilivyoundwa ili kufanya sayansi ya data kuwa ya haraka, rahisi, na ya kufurahisha!\n", "\n", "- `tidymodels`: Mfumo wa [tidymodels](https://www.tidymodels.org/) ni [mkusanyiko wa vifurushi](https://www.tidymodels.org/packages/) kwa ajili ya uundaji wa mifano na ujifunzaji wa mashine.\n", "\n", "- `themis`: [Kifurushi cha themis](https://themis.tidymodels.org/) kinatoa Hatua za Ziada za Mapishi kwa Kushughulikia Data Isiyosawazishwa.\n", "\n", "Unaweza kuvifunga kwa kutumia:\n", "\n", "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", "\n", "Vinginevyo, script iliyo hapa chini hukagua kama una vifurushi vinavyohitajika kukamilisha moduli hii na kuvifunga kwako endapo havipo.\n" ] }, { "cell_type": "code", "metadata": { "id": "vZ57IuUxgyQt" }, "source": [ "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", "\n", "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "z22M-pj4g07x" }, "source": [ "## **1. Ramani ya uainishaji**\n", "\n", "Katika [somo letu la awali](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1), tulijaribu kujibu swali: tunachaguaje kati ya mifano mbalimbali? Kwa kiasi kikubwa, inategemea sifa za data na aina ya tatizo tunalotaka kutatua (kwa mfano, uainishaji au regression?)\n", "\n", "Hapo awali, tulijifunza kuhusu chaguo mbalimbali unazoweza kutumia unapouainisha data kwa kutumia karatasi ya msaada ya Microsoft. Mfumo wa Kujifunza kwa Mashine wa Python, Scikit-learn, unatoa karatasi ya msaada inayofanana lakini ya kina zaidi ambayo inaweza kusaidia zaidi kupunguza chaguo zako za estimators (neno lingine kwa classifiers):\n", "\n", "
\n",
" \n",
"
\n",
" \n",
"
\n",
" \n",
"