{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Prețuri Dovleci\n", "\n", "Încarcă bibliotecile și setul de date necesar. Convertește datele într-un dataframe care conține un subset al datelor:\n", "\n", "- Selectează doar dovlecii cu prețuri exprimate pe bușel\n", "- Convertește data într-o lună\n", "- Calculează prețul ca o medie între prețurile maxime și minime\n", "- Convertește prețul pentru a reflecta prețul pe cantitatea de bușel\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from datetime import datetime\n", "\n", "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", "\n", "pumpkins.head()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", "\n", "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", "pumpkins = pumpkins.loc[:, columns_to_select]\n", "\n", "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", "\n", "month = pd.DatetimeIndex(pumpkins['Date']).month\n", "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", "\n", "new_pumpkins = pd.DataFrame(\n", " {'Month': month, \n", " 'DayOfYear' : day_of_year, \n", " 'Variety': pumpkins['Variety'], \n", " 'City': pumpkins['City Name'], \n", " 'Package': pumpkins['Package'], \n", " 'Low Price': pumpkins['Low Price'],\n", " 'High Price': pumpkins['High Price'], \n", " 'Price': price})\n", "\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", "\n", "new_pumpkins.head()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un grafic de tip scatterplot de bază ne amintește că avem date doar din august până în decembrie. Probabil avem nevoie de mai multe date pentru a putea trage concluzii într-un mod liniar.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "plt.scatter('Month','Price',data=new_pumpkins)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "plt.scatter('DayOfYear','Price',data=new_pumpkins)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Declinarea responsabilității**: \nAcest document a fost tradus utilizând serviciul de traducere AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși depunem eforturi pentru a asigura acuratețea, vă rugăm să aveți în vedere că traducerile automate pot conține erori sau inexactități. Documentul original în limba sa nativă ar trebui considerat sursa autoritară. Pentru informații critice, se recomandă traducerea profesională realizată de un specialist uman. Nu ne asumăm răspunderea pentru eventualele neînțelegeri sau interpretări greșite care pot apărea din utilizarea acestei traduceri.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3-final" }, "orig_nbformat": 2, "coopTranslator": { "original_hash": "b032d371c75279373507f003439a577e", "translation_date": "2025-09-06T11:29:48+00:00", "source_file": "2-Regression/3-Linear/notebook.ipynb", "language_code": "ro" } }, "nbformat": 4, "nbformat_minor": 2 }