{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# डेटा सेटअप\n", "\n", "या नोटबुकमध्ये, आम्ही कसे करायचे ते दाखवतो:\n", "- या मॉड्यूलसाठी टाइम सिरीज डेटाचे सेटअप करणे\n", "- डेटाचे व्हिज्युअलायझेशन करणे\n", "\n", "या उदाहरणातील डेटा GEFCom2014 अंदाज वर्तविण्याच्या स्पर्धेतून घेतलेला आहे. \n", "तो 2012 ते 2014 या कालावधीत 3 वर्षांच्या तासागणिक वीज लोड आणि तापमानाच्या मूल्यांचा समावेश करतो. \n", "\n", "Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli आणि Rob J. Hyndman, \"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import os\n", "import matplotlib.pyplot as plt\n", "from common.utils import load_data\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "CSV मधून डेटा Pandas डेटा फ्रेममध्ये लोड करा\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " load\n", "2012-01-01 00:00:00 2698.0\n", "2012-01-01 01:00:00 2558.0\n", "2012-01-01 02:00:00 2444.0\n", "2012-01-01 03:00:00 2402.0\n", "2012-01-01 04:00:00 2403.0" ], "text/html": "
\n | load | \n
---|---|
2012-01-01 00:00:00 | \n2698.0 | \n
2012-01-01 01:00:00 | \n2558.0 | \n
2012-01-01 02:00:00 | \n2444.0 | \n
2012-01-01 03:00:00 | \n2402.0 | \n
2012-01-01 04:00:00 | \n2403.0 | \n