{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "在本筆記本中,我們將展示如何:\n", "- 設置此模組的時間序列數據\n", "- 可視化數據\n", "\n", "此範例中的數據取自GEFCom2014預測競賽。它包含2012年至2014年間3年的每小時電力負載和溫度值。\n", "\n", "陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli和Rob J. Hyndman,\"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond\",《國際預測期刊》,第32卷,第3期,頁896-913,2016年7月至9月。\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import os\n", "import matplotlib.pyplot as plt\n", "from common.utils import load_data\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "將數據從 csv 加載到 Pandas 數據框中\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " load\n", "2012-01-01 00:00:00 2698.0\n", "2012-01-01 01:00:00 2558.0\n", "2012-01-01 02:00:00 2444.0\n", "2012-01-01 03:00:00 2402.0\n", "2012-01-01 04:00:00 2403.0" ], "text/html": "
\n | load | \n
---|---|
2012-01-01 00:00:00 | \n2698.0 | \n
2012-01-01 01:00:00 | \n2558.0 | \n
2012-01-01 02:00:00 | \n2444.0 | \n
2012-01-01 03:00:00 | \n2402.0 | \n
2012-01-01 04:00:00 | \n2403.0 | \n