{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "anaconda-cloud": "", "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.1" }, "colab": { "name": "lesson_14.ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "coopTranslator": { "original_hash": "ad65fb4aad0a156b42216e4929f490fc", "translation_date": "2025-08-29T23:38:16+00:00", "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", "language_code": "mo" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "GULATlQXLXyR" }, "source": [ "## 探索使用 R 和 Tidy 數據原則進行 K-Means 分群\n", "\n", "### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", "\n", "在本課程中,您將學習如何使用 Tidymodels 套件以及 R 生態系統中的其他套件(我們稱它們為朋友 🧑🤝🧑),以及您之前匯入的尼日利亞音樂數據集來創建分群。我們將介紹 K-Means 分群的基礎知識。請記住,正如您在之前的課程中所學,分群有許多不同的方法,您使用的方法取決於您的數據。我們將嘗試 K-Means,因為它是最常見的分群技術。讓我們開始吧!\n", "\n", "您將學習的術語:\n", "\n", "- Silhouette 評分\n", "\n", "- Elbow 方法\n", "\n", "- Inertia(慣性)\n", "\n", "- Variance(方差)\n", "\n", "### **簡介**\n", "\n", "[K-Means 分群](https://wikipedia.org/wiki/K-means_clustering) 是一種源自信號處理領域的方法。它用於根據特徵的相似性將數據分成 `k 個分群`。\n", "\n", "這些分群可以以 [Voronoi 圖](https://wikipedia.org/wiki/Voronoi_diagram) 的形式進行可視化,其中包括一個點(或“種子”)及其對應的區域。\n", "\n", "
\n",
" \n",
"
\n",
" \n",
"
\n",
" \n",
"
\n",
" \n",
"