{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "lesson_12-R.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "ir", "display_name": "R" }, "language_info": { "name": "R" }, "coopTranslator": { "original_hash": "fab50046ca413a38939d579f8432274f", "translation_date": "2025-08-29T23:50:53+00:00", "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", "language_code": "mo" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "jsFutf_ygqSx" }, "source": [] }, { "cell_type": "markdown", "metadata": { "id": "HD54bEefgtNO" }, "source": [ "## 美食分類器 2\n", "\n", "在第二堂分類課中,我們將探索`更多方法`來分類類別型數據。我們還會了解選擇不同分類器所帶來的影響。\n", "\n", "### [**課前測驗**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", "\n", "### **前置條件**\n", "\n", "我們假設你已完成之前的課程,因為我們將延續之前學到的一些概念。\n", "\n", "在這堂課中,我們需要以下套件:\n", "\n", "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一個[由 R 套件組成的集合](https://www.tidyverse.org/packages),旨在讓數據科學更快速、更簡單、更有趣!\n", "\n", "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一個[套件集合](https://www.tidymodels.org/packages),用於建模和機器學習。\n", "\n", "- `themis`: [themis 套件](https://themis.tidymodels.org/) 提供額外的配方步驟,用於處理不平衡數據。\n", "\n", "你可以使用以下指令安裝它們:\n", "\n", "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", "\n", "或者,以下腳本會檢查你是否已安裝完成此模組所需的套件,並在缺少時為你安裝。\n" ] }, { "cell_type": "code", "metadata": { "id": "vZ57IuUxgyQt" }, "source": [ "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", "\n", "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "z22M-pj4g07x" }, "source": [ "## **1. 一張分類地圖**\n", "\n", "在我們的[上一課](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1)中,我們試圖解答這個問題:如何在多個模型之間進行選擇?在很大程度上,這取決於數據的特性以及我們想要解決的問題類型(例如分類或回歸?)\n", "\n", "之前,我們學習了如何使用 Microsoft 的速查表來分類數據的各種選項。Python 的機器學習框架 Scikit-learn 提供了一個類似但更細緻的速查表,可以進一步幫助縮小估算器(分類器的另一個術語)的範圍:\n", "\n", "
\n",
" \n",
"
\n",
" \n",
"
\n",
" \n",
"