{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "이 노트북에서는 다음을 시연합니다:\n", "\n", "- SVM 회귀 모델 훈련을 위해 2D 시계열 데이터를 준비하는 방법 \n", "- RBF 커널을 사용하여 SVR을 구현하는 방법 \n", "- 플롯과 MAPE를 사용하여 모델을 평가하는 방법 \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 모듈 가져오기\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## 데이터 준비\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "### 데이터 로드\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", " | load | \n", "
---|---|
2012-01-01 00:00:00 | \n", "2698.0 | \n", "
2012-01-01 01:00:00 | \n", "2558.0 | \n", "
2012-01-01 02:00:00 | \n", "2444.0 | \n", "
2012-01-01 03:00:00 | \n", "2402.0 | \n", "
2012-01-01 04:00:00 | \n", "2403.0 | \n", "