{ "cells": [ { "source": [ "# 맛있는 아시아 및 인도 요리\n", "\n", "## 소개\n", "아시아와 인도 요리는 전 세계적으로 사랑받는 독특한 풍미와 다양한 재료로 유명합니다. 이 문서에서는 몇 가지 인기 있는 요리와 그 특징에 대해 살펴보겠습니다.\n", "\n", "## 아시아 요리\n", "아시아 요리는 지역마다 매우 다양하며, 각 나라의 문화와 전통을 반영합니다. 다음은 몇 가지 대표적인 요리입니다:\n", "\n", "### 스시\n", "스시는 일본 요리의 대표적인 예로, 신선한 생선과 밥을 주재료로 사용합니다. 다양한 종류의 스시가 있으며, 각기 다른 재료와 조리법으로 만들어집니다.\n", "\n", "### 팟타이\n", "태국의 팟타이는 쌀국수, 새우, 두부, 땅콩, 숙주나물 등을 사용하여 만들어지는 달콤하고 짭짤한 볶음 요리입니다. 간단하면서도 깊은 맛을 자랑합니다.\n", "\n", "### 딤섬\n", "딤섬은 중국 광둥 지역에서 유래한 작은 크기의 요리로, 찐만두, 구운 빵, 튀김 요리 등 다양한 종류가 있습니다. 보통 차와 함께 즐깁니다.\n", "\n", "## 인도 요리\n", "인도 요리는 풍부한 향신료와 강렬한 맛으로 유명합니다. 다음은 몇 가지 인기 있는 요리입니다:\n", "\n", "### 치킨 티카 마살라\n", "치킨 티카 마살라는 구운 닭고기를 크리미한 토마토 소스와 함께 조리한 요리로, 전 세계적으로 사랑받는 인도 요리 중 하나입니다.\n", "\n", "### 사모사\n", "사모사는 감자, 완두콩, 향신료로 채워진 삼각형 모양의 튀김 요리입니다. 간단한 간식으로 인기가 많습니다.\n", "\n", "### 난\n", "난은 인도의 전통적인 빵으로, 탄두르 오븐에서 구워집니다. 커리와 함께 곁들여 먹는 경우가 많습니다.\n", "\n", "## 결론\n", "아시아와 인도 요리는 그 풍부한 맛과 다양성으로 인해 많은 사람들에게 사랑받고 있습니다. 각 요리는 고유의 문화와 역사를 담고 있어, 음식을 통해 새로운 문화를 경험할 수 있는 기회를 제공합니다.\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "Imblearn을 설치하여 SMOTE를 활성화하세요. 이는 분류 작업 시 불균형 데이터를 처리하는 데 도움을 주는 Scikit-learn 패키지입니다. (https://imbalanced-learn.org/stable/)\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install imblearn" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import numpy as np\n", "from imblearn.over_sampling import SMOTE" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('../../data/cuisines.csv')" ] }, { "source": [ "이 데이터셋은 주어진 요리 세트에서 다양한 요리의 모든 종류의 재료를 나타내는 385개의 열을 포함하고 있습니다.\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 65 indian 0 0 0 0 0 \n", "1 66 indian 1 0 0 0 0 \n", "2 67 indian 0 0 0 0 0 \n", "3 68 indian 0 0 0 0 0 \n", "4 69 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 385 columns]" ], "text/html": "
\n | Unnamed: 0 | \ncuisine | \nalmond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n65 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n66 | \nindian | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n67 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n68 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n69 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 385 columns
\n\n | almond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \nartichoke | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 380 columns
\n\n | almond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \nartichoke | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 380 columns
\n\n | cuisine | \nalmond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \nindian | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n
3990 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3991 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3992 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3993 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3994 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3995 rows × 381 columns
\n