{ "cells": [ { "source": [ "分類モデルの構築\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 0 indian 0 0 0 0 0 \n", "1 1 indian 1 0 0 0 0 \n", "2 2 indian 0 0 0 0 0 \n", "3 3 indian 0 0 0 0 0 \n", "4 4 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 382 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00indian00000000...0000000000
11indian10000000...0000000000
22indian00000000...0000000000
33indian00000000...0000000000
44indian00000000...0000000010
\n

5 rows × 382 columns

\n
" }, "metadata": {}, "execution_count": 1 } ], "source": [ "import pandas as pd\n", "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", "cuisines_df.head()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", "from sklearn.svm import SVC\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0 indian\n", "1 indian\n", "2 indian\n", "3 indian\n", "4 indian\n", "Name: cuisine, dtype: object" ] }, "metadata": {}, "execution_count": 3 } ], "source": [ "cuisines_label_df = cuisines_df['cuisine']\n", "cuisines_label_df.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " almond angelica anise anise_seed apple apple_brandy apricot \\\n", "0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 \n", "\n", " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 380 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
00000000000...0000000000
11000000000...0000000000
20000000000...0000000000
30000000000...0000000000
40000000000...0000000010
\n

5 rows × 380 columns

\n
" }, "metadata": {}, "execution_count": 4 } ], "source": [ "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", "cuisines_feature_df.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy is 0.8181818181818182\n" ] } ], "source": [ "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", "model = lr.fit(X_train, np.ravel(y_train))\n", "\n", "accuracy = model.score(X_test, y_test)\n", "print (\"Accuracy is {}\".format(accuracy))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" ] } ], "source": [ "# test an item\n", "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", "print(f'cuisine: {y_test.iloc[50]}')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " 0\n", "korean 0.392231\n", "chinese 0.372872\n", "japanese 0.218825\n", "thai 0.013427\n", "indian 0.002645" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
0
korean0.392231
chinese0.372872
japanese0.218825
thai0.013427
indian0.002645
\n
" }, "metadata": {}, "execution_count": 8 } ], "source": [ "#rehsape to 2d array and transpose\n", "test= X_test.iloc[50].values.reshape(-1, 1).T\n", "# predict with score\n", "proba = model.predict_proba(test)\n", "classes = model.classes_\n", "# create df with classes and scores\n", "resultdf = pd.DataFrame(data=proba, columns=classes)\n", "\n", "# create df to show results\n", "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", "topPrediction.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" ] } ], "source": [ "y_pred = model.predict(X_test)\r\n", "print(classification_report(y_test,y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を追求しておりますが、自動翻訳には誤りや不正確な部分が含まれる可能性があります。元の言語で記載された原文が正式な情報源とみなされるべきです。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。\n" ] } ], "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" }, "kernelspec": { "name": "python3", "display_name": "Python 3.7.0 64-bit ('3.7')" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } }, "coopTranslator": { "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", "translation_date": "2025-09-04T02:23:13+00:00", "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", "language_code": "ja" } }, "nbformat": 4, "nbformat_minor": 4 }