{ "cells": [ { "source": [ "# Hidangan Asia dan India yang Lezat\n", "\n", "## Pendahuluan\n", "\n", "Masakan Asia dan India dikenal karena rasa dan aroma yang kaya. Dari kari pedas hingga mie goreng yang menggugah selera, ada sesuatu untuk semua orang. Artikel ini akan membahas beberapa hidangan populer dari berbagai wilayah di Asia dan India.\n", "\n", "## Hidangan Populer\n", "\n", "### 1. Nasi Goreng\n", "\n", "Nasi goreng adalah hidangan khas Asia Tenggara yang terbuat dari nasi yang digoreng dengan berbagai bumbu, sayuran, dan sering kali ditambahkan daging atau seafood. Hidangan ini mudah disesuaikan dengan selera masing-masing.\n", "\n", "### 2. Kari Ayam\n", "\n", "Kari ayam adalah hidangan India yang terkenal di seluruh dunia. Dibuat dengan potongan ayam yang dimasak dalam saus berbumbu yang kaya, biasanya disajikan dengan nasi atau roti seperti naan.\n", "\n", "### 3. Sushi\n", "\n", "Sushi adalah hidangan Jepang yang terdiri dari nasi yang dibumbui dengan cuka, dipadukan dengan berbagai bahan seperti ikan mentah, sayuran, dan rumput laut. Hidangan ini sering disajikan dengan kecap asin, wasabi, dan jahe acar.\n", "\n", "### 4. Pad Thai\n", "\n", "Pad Thai adalah mie goreng khas Thailand yang dimasak dengan saus asam manis, telur, tahu, dan sering kali ditambahkan udang atau ayam. Hidangan ini biasanya dihiasi dengan kacang tanah cincang dan perasan jeruk nipis.\n", "\n", "### 5. Samosa\n", "\n", "Samosa adalah camilan khas India yang berbentuk segitiga, diisi dengan kentang berbumbu, kacang polong, atau daging cincang, lalu digoreng hingga renyah. Samosa sering disajikan dengan saus chutney.\n", "\n", "## Tips Memasak\n", "\n", "- **Gunakan bahan segar:** Bahan segar akan meningkatkan rasa dan kualitas hidangan Anda.\n", "- **Eksperimen dengan bumbu:** Jangan takut mencoba berbagai kombinasi bumbu untuk menemukan rasa yang Anda sukai.\n", "- **Ikuti resep tradisional:** Untuk mendapatkan rasa autentik, cobalah mengikuti resep tradisional dari wilayah asal hidangan.\n", "\n", "## Kesimpulan\n", "\n", "Masakan Asia dan India menawarkan berbagai pilihan rasa yang unik dan menggugah selera. Dengan mencoba hidangan-hidangan ini, Anda dapat menjelajahi budaya dan tradisi kuliner yang kaya dari wilayah tersebut. Selamat mencoba dan menikmati!\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "Instal Imblearn yang akan memungkinkan SMOTE. Ini adalah paket Scikit-learn yang membantu menangani data yang tidak seimbang saat melakukan klasifikasi. (https://imbalanced-learn.org/stable/)\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install imblearn" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import numpy as np\n", "from imblearn.over_sampling import SMOTE" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('../../data/cuisines.csv')" ] }, { "source": [ "Dataset ini mencakup 385 kolom yang menunjukkan berbagai jenis bahan dalam berbagai masakan dari satu set masakan tertentu.\n" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", "0 65 indian 0 0 0 0 0 \n", "1 66 indian 1 0 0 0 0 \n", "2 67 indian 0 0 0 0 0 \n", "3 68 indian 0 0 0 0 0 \n", "4 69 indian 0 0 0 0 0 \n", "\n", " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", "0 0 0 0 ... 0 0 0 \n", "1 0 0 0 ... 0 0 0 \n", "2 0 0 0 ... 0 0 0 \n", "3 0 0 0 ... 0 0 0 \n", "4 0 0 0 ... 0 0 0 \n", "\n", " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", "0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 1 0 \n", "\n", "[5 rows x 385 columns]" ], "text/html": "
\n | Unnamed: 0 | \ncuisine | \nalmond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n65 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n66 | \nindian | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n67 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n68 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n69 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 385 columns
\n\n | almond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \nartichoke | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 380 columns
\n\n | almond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \nartichoke | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
5 rows × 380 columns
\n\n | cuisine | \nalmond | \nangelica | \nanise | \nanise_seed | \napple | \napple_brandy | \napricot | \narmagnac | \nartemisia | \n... | \nwhiskey | \nwhite_bread | \nwhite_wine | \nwhole_grain_wheat_flour | \nwine | \nwood | \nyam | \nyeast | \nyogurt | \nzucchini | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
1 | \nindian | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
2 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
4 | \nindian | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n0 | \n
... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n... | \n
3990 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3991 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3992 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3993 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3994 | \nthai | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n... | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
3995 rows × 381 columns
\n