{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [ "חיזוי סדרות זמן באמצעות רגרסור מכונת וקטורים תומכת\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "במחברת זו, אנו מדגימים כיצד:\n", "\n", "- להכין נתוני סדרות זמן דו-ממדיות לאימון מודל רגרסור SVM \n", "- ליישם SVR באמצעות ליבת RBF \n", "- להעריך את המודל באמצעות גרפים ו-MAPE \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ייבוא מודולים\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## הכנת נתונים\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "טען נתונים\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", " | load | \n", "
---|---|
2012-01-01 00:00:00 | \n", "2698.0 | \n", "
2012-01-01 01:00:00 | \n", "2558.0 | \n", "
2012-01-01 02:00:00 | \n", "2444.0 | \n", "
2012-01-01 03:00:00 | \n", "2402.0 | \n", "
2012-01-01 04:00:00 | \n", "2403.0 | \n", "