{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": 3 }, "orig_nbformat": 4, "coopTranslator": { "original_hash": "27de2abc0235ebd22080fc8f1107454d", "translation_date": "2025-09-04T09:30:02+00:00", "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", "language_code": "he" } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from textblob import TextBlob\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# You should download the book text, clean it, and import it here\n", "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", " file_contents = f.read()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "book_pride = TextBlob(file_contents)\n", "positive_sentiment_sentences = []\n", "negative_sentiment_sentences = []" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for sentence in book_pride.sentences:\n", " if sentence.sentiment.polarity == 1:\n", " positive_sentiment_sentences.append(sentence)\n", " if sentence.sentiment.polarity == -1:\n", " negative_sentiment_sentences.append(sentence)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", "for sentence in positive_sentiment_sentences:\n", " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", "for sentence in negative_sentiment_sentences:\n", " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**כתב ויתור**: \nמסמך זה תורגם באמצעות שירות תרגום מבוסס בינה מלאכותית [Co-op Translator](https://github.com/Azure/co-op-translator). למרות שאנו שואפים לדיוק, יש לקחת בחשבון שתרגומים אוטומטיים עשויים להכיל שגיאות או אי דיוקים. המסמך המקורי בשפתו המקורית צריך להיחשב כמקור סמכותי. עבור מידע קריטי, מומלץ להשתמש בתרגום מקצועי על ידי אדם. איננו נושאים באחריות לאי הבנות או לפרשנויות שגויות הנובעות משימוש בתרגום זה.\n" ] } ] }