{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [ "# Aikasarjojen ennustaminen käyttäen Support Vector Regressoria\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tässä muistikirjassa näytämme, kuinka:\n", "\n", "- valmistellaan 2D-aikasarjadataa SVM-regressiomallin koulutusta varten\n", "- toteutetaan SVR käyttäen RBF-ydintä\n", "- arvioidaan mallia käyttämällä kaavioita ja MAPEa\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Modulien tuonti\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## Datan valmistelu\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "### Lataa dataa\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", " | load | \n", "
---|---|
2012-01-01 00:00:00 | \n", "2698.0 | \n", "
2012-01-01 01:00:00 | \n", "2558.0 | \n", "
2012-01-01 02:00:00 | \n", "2444.0 | \n", "
2012-01-01 03:00:00 | \n", "2402.0 | \n", "
2012-01-01 04:00:00 | \n", "2403.0 | \n", "