{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [ "پیش‌بینی سری‌های زمانی با استفاده از رگرسیون بردار پشتیبان\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "در این دفترچه، نشان می‌دهیم چگونه:\n", "\n", "- داده‌های سری زمانی دو‌بعدی را برای آموزش مدل رگرسیون SVM آماده کنیم \n", "- SVR را با استفاده از هسته RBF پیاده‌سازی کنیم \n", "- مدل را با استفاده از نمودارها و MAPE ارزیابی کنیم \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## وارد کردن ماژول‌ها\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## آماده‌سازی داده‌ها\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "### بارگذاری داده‌ها\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n", "
" ], "text/plain": [ " load\n", "2012-01-01 00:00:00 2698.0\n", "2012-01-01 01:00:00 2558.0\n", "2012-01-01 02:00:00 2444.0\n", "2012-01-01 03:00:00 2402.0\n", "2012-01-01 04:00:00 2403.0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "energy = load_data('../../data')[['load']]\n", "energy.head(5)" ] }, { "cell_type": "markdown", "metadata": { "id": "O0BWP13rGnh4" }, "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 486 }, "id": "hGaNPKu_Gidk", "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" }, "outputs": [], "source": [ "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", "plt.xlabel('timestamp', fontsize=12)\n", "plt.ylabel('load', fontsize=12)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "IPuNor4eGwYY" }, "source": [ "### ایجاد داده‌های آموزشی و آزمایشی\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ysvsNyONGt0Q" }, "outputs": [], "source": [ "train_start_dt = '2014-11-01 00:00:00'\n", "test_start_dt = '2014-12-30 00:00:00'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 548 }, "id": "SsfdLoPyGy9w", "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" }, "outputs": [], "source": [ "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", "plt.xlabel('timestamp', fontsize=12)\n", "plt.ylabel('load', fontsize=12)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "XbFTqBw6G1Ch" }, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "اکنون باید داده‌ها را با انجام فیلتر کردن و مقیاس‌بندی برای آموزش آماده کنید.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "cYivRdQpHDj3", "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" }, "outputs": [], "source": [ "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", "\n", "print('Training data shape: ', train.shape)\n", "print('Test data shape: ', test.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "داده‌ها را مقیاس‌بندی کنید تا در بازه (۰، ۱) قرار گیرند.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "3DNntGQnZX8G", "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" }, "outputs": [], "source": [ "scaler = MinMaxScaler()\n", "train['load'] = scaler.fit_transform(train)\n", "train.head(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "26Yht-rzZexe", "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" }, "outputs": [], "source": [ "test['load'] = scaler.transform(test)\n", "test.head(5)" ] }, { "cell_type": "markdown", "metadata": { "id": "x0n6jqxOQ41Z" }, "source": [ "ایجاد داده با گام‌های زمانی\n" ] }, { "cell_type": "markdown", "metadata": { "id": "fdmxTZtOQ8xs" }, "source": [ "برای SVR ما، داده‌های ورودی را به فرم `[batch, timesteps]` تبدیل می‌کنیم. بنابراین، داده‌های `train_data` و `test_data` موجود را به گونه‌ای تغییر شکل می‌دهیم که یک بُعد جدید که به زمان‌بندی‌ها اشاره دارد، اضافه شود. در مثال ما، مقدار `timesteps = 5` را در نظر می‌گیریم. بنابراین، ورودی‌های مدل داده‌های مربوط به ۴ زمان‌بندی اول هستند و خروجی داده مربوط به زمان‌بندی پنجم خواهد بود.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Rpju-Sc2HFm0" }, "outputs": [], "source": [ "# Converting to numpy arrays\n", "\n", "train_data = train.values\n", "test_data = test.values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Selecting the timesteps\n", "\n", "timesteps=None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "O-JrsrsVJhUQ", "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" }, "outputs": [], "source": [ "# Converting data to 2D tensor\n", "\n", "train_data_timesteps=None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "exJD8AI7KE4g", "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" }, "outputs": [], "source": [ "# Converting test data to 2D tensor\n", "\n", "test_data_timesteps=None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2u0R2sIsLuq5" }, "outputs": [], "source": [ "x_train, y_train = None\n", "x_test, y_test = None\n", "\n", "print(x_train.shape, y_train.shape)\n", "print(x_test.shape, y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "8wIPOtAGLZlh" }, "source": [ "## ایجاد مدل SVR\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "EhA403BEPEiD" }, "outputs": [], "source": [ "# Create model using RBF kernel\n", "\n", "model = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GS0UA3csMbqp", "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" }, "outputs": [], "source": [ "# Fit model on training data" ] }, { "cell_type": "markdown", "metadata": { "id": "Rz_x8S3UrlcF" }, "source": [ "### انجام پیش‌بینی مدل\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "XR0gnt3MnuYS", "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" }, "outputs": [], "source": [ "# Making predictions\n", "\n", "y_train_pred = None\n", "y_test_pred = None" ] }, { "cell_type": "markdown", "metadata": { "id": "_2epncg-SGzr" }, "source": [ "## تحلیل عملکرد مدل\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Scaling the predictions\n", "\n", "y_train_pred = scaler.inverse_transform(y_train_pred)\n", "y_test_pred = scaler.inverse_transform(y_test_pred)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xmm_YLXhq7gV", "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" }, "outputs": [], "source": [ "# Scaling the original values\n", "\n", "y_train = scaler.inverse_transform(y_train)\n", "y_test = scaler.inverse_transform(y_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "u3LBj93coHEi", "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" }, "outputs": [], "source": [ "# Extract the timesteps for x-axis\n", "\n", "train_timestamps = None\n", "test_timestamps = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(25,6))\n", "# plot original output\n", "# plot predicted output\n", "plt.legend(['Actual','Predicted'])\n", "plt.xlabel('Timestamp')\n", "plt.title(\"Training data prediction\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "LnhzcnYtXHCm", "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" }, "outputs": [], "source": [ "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 225 }, "id": "53Q02FoqQH4V", "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" }, "outputs": [], "source": [ "plt.figure(figsize=(10,3))\n", "# plot original output\n", "# plot predicted output\n", "plt.legend(['Actual','Predicted'])\n", "plt.xlabel('Timestamp')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "clOAUH-SXCJG", "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" }, "outputs": [], "source": [ "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" ] }, { "cell_type": "markdown", "metadata": { "id": "DHlKvVCId5ue" }, "source": [ "پیش‌بینی مجموعه داده کامل\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "cOFJ45vreO0N", "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" }, "outputs": [], "source": [ "# Extracting load values as numpy array\n", "data = None\n", "\n", "# Scaling\n", "data = None\n", "\n", "# Transforming to 2D tensor as per model input requirement\n", "data_timesteps=None\n", "\n", "# Selecting inputs and outputs from data\n", "X, Y = None, None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ESSAdQgwexIi" }, "outputs": [], "source": [ "# Make model predictions\n", "\n", "# Inverse scale and reshape\n", "Y_pred = None\n", "Y = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 328 }, "id": "M_qhihN0RVVX", "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" }, "outputs": [], "source": [ "plt.figure(figsize=(30,8))\n", "# plot original output\n", "# plot predicted output\n", "plt.legend(['Actual','Predicted'])\n", "plt.xlabel('Timestamp')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AcN7pMYXVGTK", "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" }, "outputs": [], "source": [ "print('MAPE: ', mape(Y_pred, Y)*100, '%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**سلب مسئولیت**: \nاین سند با استفاده از سرویس ترجمه هوش مصنوعی [Co-op Translator](https://github.com/Azure/co-op-translator) ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "Recurrent_Neural_Networks.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" }, "coopTranslator": { "original_hash": "e86ce102239a14c44585623b9b924a74", "translation_date": "2025-09-04T01:57:21+00:00", "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", "language_code": "fa" } }, "nbformat": 4, "nbformat_minor": 1 }