{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Variedades de Calabaza y Color\n", "\n", "Carga las bibliotecas necesarias y el conjunto de datos. Convierte los datos en un dataframe que contenga un subconjunto de los datos:\n", "\n", "Veamos la relación entre el color y la variedad\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", "

5 rows × 26 columns

\n", "
" ], "text/plain": [ " City Name Type Package Variety Sub Variety Grade Date \\\n", "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", "\n", " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", "0 270.0 280.0 270.0 ... NaN NaN NaN \n", "1 270.0 280.0 270.0 ... NaN NaN NaN \n", "2 160.0 160.0 160.0 ... NaN NaN NaN \n", "3 160.0 160.0 160.0 ... NaN NaN NaN \n", "4 90.0 100.0 90.0 ... NaN NaN NaN \n", "\n", " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", "0 NaN NaN NaN E NaN NaN NaN \n", "1 NaN NaN NaN E NaN NaN NaN \n", "2 NaN NaN NaN N NaN NaN NaN \n", "3 NaN NaN NaN N NaN NaN NaN \n", "4 NaN NaN NaN N NaN NaN NaN \n", "\n", "[5 rows x 26 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", "\n", "full_pumpkins.head()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Descargo de responsabilidad**: \nEste documento ha sido traducido utilizando el servicio de traducción automática [Co-op Translator](https://github.com/Azure/co-op-translator). Si bien nos esforzamos por lograr precisión, tenga en cuenta que las traducciones automáticas pueden contener errores o imprecisiones. El documento original en su idioma nativo debe considerarse como la fuente autorizada. Para información crítica, se recomienda una traducción profesional realizada por humanos. No nos hacemos responsables de malentendidos o interpretaciones erróneas que puedan surgir del uso de esta traducción.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.1" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } }, "orig_nbformat": 2, "coopTranslator": { "original_hash": "dee08c2b49057b0de8b6752c4dbca368", "translation_date": "2025-09-04T01:18:19+00:00", "source_file": "2-Regression/4-Logistic/notebook.ipynb", "language_code": "es" } }, "nbformat": 4, "nbformat_minor": 2 }