{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "fv9OoQsMFk5A" }, "source": [ "# Time series prediction using Support Vector Regressor\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we show how to:\n", "\n", "- prepare 2D time series data for training an SVM regression model\n", "- implement SVR with an RBF kernel\n", "- assess the model using graphs and MAPE\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importing modules\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys\n", "sys.path.append('../../')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "M687KNlQFp0-" }, "outputs": [], "source": [ "import os\n", "import warnings\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import datetime as dt\n", "import math\n", "\n", "from sklearn.svm import SVR\n", "from sklearn.preprocessing import MinMaxScaler\n", "from common.utils import load_data, mape" ] }, { "cell_type": "markdown", "metadata": { "id": "Cj-kfVdMGjWP" }, "source": [ "## Preparing data\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8fywSjC6GsRz" }, "source": [ "### Load data\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "aBDkEB11Fumg", "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
load
2012-01-01 00:00:002698.0
2012-01-01 01:00:002558.0
2012-01-01 02:00:002444.0
2012-01-01 03:00:002402.0
2012-01-01 04:00:002403.0
\n", "
" ], "text/plain": [ " load\n", "2012-01-01 00:00:00 2698.0\n", "2012-01-01 01:00:00 2558.0\n", "2012-01-01 02:00:00 2444.0\n", "2012-01-01 03:00:00 2402.0\n", "2012-01-01 04:00:00 2403.0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "energy = load_data('../../data')[['load']]\n", "energy.head(5)" ] }, { "cell_type": "markdown", "metadata": { "id": "O0BWP13rGnh4" }, "source": [ "### Plot the data\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 486 }, "id": "hGaNPKu_Gidk", "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" }, "outputs": [], "source": [ "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", "plt.xlabel('timestamp', fontsize=12)\n", "plt.ylabel('load', fontsize=12)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "IPuNor4eGwYY" }, "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ysvsNyONGt0Q" }, "outputs": [], "source": [ "train_start_dt = '2014-11-01 00:00:00'\n", "test_start_dt = '2014-12-30 00:00:00'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 548 }, "id": "SsfdLoPyGy9w", "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" }, "outputs": [], "source": [ "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", "plt.xlabel('timestamp', fontsize=12)\n", "plt.ylabel('load', fontsize=12)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "XbFTqBw6G1Ch" }, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, you need to prepare the data for training by performing filtering and scaling of your data.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "cYivRdQpHDj3", "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" }, "outputs": [], "source": [ "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", "\n", "print('Training data shape: ', train.shape)\n", "print('Test data shape: ', test.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rescale los datos para que estén en el rango (0, 1).\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "id": "3DNntGQnZX8G", "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" }, "outputs": [], "source": [ "scaler = MinMaxScaler()\n", "train['load'] = scaler.fit_transform(train)\n", "train.head(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "26Yht-rzZexe", "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" }, "outputs": [], "source": [ "test['load'] = scaler.transform(test)\n", "test.head(5)" ] }, { "cell_type": "markdown", "metadata": { "id": "x0n6jqxOQ41Z" }, "source": [ "### Creating data with time-steps\n" ] }, { "cell_type": "markdown", "metadata": { "id": "fdmxTZtOQ8xs" }, "source": [ "For our SVR, we transform the input data to be of the form `[batch, timesteps]`. So, we reshape the existing `train_data` and `test_data` such that there is a new dimension which refers to the timesteps. For our example, we take `timesteps = 5`. So, the inputs to the model are the data for the first 4 timesteps, and the output will be the data for the 5 timestep.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Rpju-Sc2HFm0" }, "outputs": [], "source": [ "# Converting to numpy arrays\n", "\n", "train_data = train.values\n", "test_data = test.values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Selecting the timesteps\n", "\n", "timesteps=None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "O-JrsrsVJhUQ", "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" }, "outputs": [], "source": [ "# Converting data to 2D tensor\n", "\n", "train_data_timesteps=None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "exJD8AI7KE4g", "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" }, "outputs": [], "source": [ "# Converting test data to 2D tensor\n", "\n", "test_data_timesteps=None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2u0R2sIsLuq5" }, "outputs": [], "source": [ "x_train, y_train = None\n", "x_test, y_test = None\n", "\n", "print(x_train.shape, y_train.shape)\n", "print(x_test.shape, y_test.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "8wIPOtAGLZlh" }, "source": [ "## Creating SVR model\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "EhA403BEPEiD" }, "outputs": [], "source": [ "# Create model using RBF kernel\n", "\n", "model = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GS0UA3csMbqp", "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" }, "outputs": [], "source": [ "# Fit model on training data" ] }, { "cell_type": "markdown", "metadata": { "id": "Rz_x8S3UrlcF" }, "source": [ "### Make model prediction\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "XR0gnt3MnuYS", "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" }, "outputs": [], "source": [ "# Making predictions\n", "\n", "y_train_pred = None\n", "y_test_pred = None" ] }, { "cell_type": "markdown", "metadata": { "id": "_2epncg-SGzr" }, "source": [ "## Analyzing model performance\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Scaling the predictions\n", "\n", "y_train_pred = scaler.inverse_transform(y_train_pred)\n", "y_test_pred = scaler.inverse_transform(y_test_pred)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "xmm_YLXhq7gV", "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" }, "outputs": [], "source": [ "# Scaling the original values\n", "\n", "y_train = scaler.inverse_transform(y_train)\n", "y_test = scaler.inverse_transform(y_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "u3LBj93coHEi", "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" }, "outputs": [], "source": [ "# Extract the timesteps for x-axis\n", "\n", "train_timestamps = None\n", "test_timestamps = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(25,6))\n", "# plot original output\n", "# plot predicted output\n", "plt.legend(['Actual','Predicted'])\n", "plt.xlabel('Timestamp')\n", "plt.title(\"Training data prediction\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "LnhzcnYtXHCm", "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" }, "outputs": [], "source": [ "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 225 }, "id": "53Q02FoqQH4V", "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" }, "outputs": [], "source": [ "plt.figure(figsize=(10,3))\n", "# plot original output\n", "# plot predicted output\n", "plt.legend(['Actual','Predicted'])\n", "plt.xlabel('Timestamp')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "clOAUH-SXCJG", "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" }, "outputs": [], "source": [ "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" ] }, { "cell_type": "markdown", "metadata": { "id": "DHlKvVCId5ue" }, "source": [ "## Full dataset prediction\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "cOFJ45vreO0N", "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" }, "outputs": [], "source": [ "# Extracting load values as numpy array\n", "data = None\n", "\n", "# Scaling\n", "data = None\n", "\n", "# Transforming to 2D tensor as per model input requirement\n", "data_timesteps=None\n", "\n", "# Selecting inputs and outputs from data\n", "X, Y = None, None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ESSAdQgwexIi" }, "outputs": [], "source": [ "# Make model predictions\n", "\n", "# Inverse scale and reshape\n", "Y_pred = None\n", "Y = None" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 328 }, "id": "M_qhihN0RVVX", "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" }, "outputs": [], "source": [ "plt.figure(figsize=(30,8))\n", "# plot original output\n", "# plot predicted output\n", "plt.legend(['Actual','Predicted'])\n", "plt.xlabel('Timestamp')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AcN7pMYXVGTK", "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" }, "outputs": [], "source": [ "print('MAPE: ', mape(Y_pred, Y)*100, '%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Disclaimer**: \nThis document has been translated using the AI translation service [Co-op Translator](https://github.com/Azure/co-op-translator). While we aim for accuracy, please note that automated translations may include errors or inaccuracies. The original document in its native language should be regarded as the authoritative source. For critical information, professional human translation is advised. We are not responsible for any misunderstandings or misinterpretations resulting from the use of this translation.\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "Recurrent_Neural_Networks.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" }, "coopTranslator": { "original_hash": "e86ce102239a14c44585623b9b924a74", "translation_date": "2025-09-06T15:34:15+00:00", "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", "language_code": "en" } }, "nbformat": 4, "nbformat_minor": 1 }